Understanding Science Project Classroom Observation Protocol Force and Motion 2007-08

Date:	Observer:	
Teacher:	 School:	
Grade level:	Curriculum:	

IMPORTANT:

In order to keep teacher's data confidential, this cover sheet with the teacher's name will be removed upon receipt by the research staff, leaving only their ID number on the next page of the protocol. This cover sheet will be stored in a locked cabinet, separate from the completed classroom observation protocol.

Enter Site Number and Teacher ID Number here and on the next page.

Site Number:			
Teacher ID Nu	mber:	тППП	

Site	Number:
JILL	itumber.

BEFORE LESSON BEGINS (via email communication with teacher)

Audio Recording?InoIteacher onlyIteacher and classroomIndigitalIteacher onlyIteacher and classroom

Video? 🗆 yes 🗅 no

- 1. Class period and/or time of class:
- 2. Topic or topics to be covered:
- 3. Placement of class within the force and motion sequence:
- 4. Description of the classroom and seating arrangement [draw/describe/take pictures if possible], posters, centers, charts, vocabulary posted, student projects displayed?

5. Approximate numbers of boys and girls; ethnic diversity of students

DURING OBSERVATION

Introduction to the Lesson Student grouping: _____

Start time: _____

6. How does teacher begin or introduce the lesson?

- 7. What are the students doing?
- 8. Does teacher state the purpose of the lesson? □ yes □ no Stated purpose:
- 9. Does teacher provide an overview of the lesson? \Box yes \Box no
- 10.Does teacher explain how lesson relates to previous lessons? use no
- 11. How does teacher elicit or assess *prior knowledge*, and how do students share what they know?

Activity/Task Number [take as ma	any activity sheets as needed]
Student grouping:	Start time:

12.Describe science content, nature of activity, artifacts, what students are doing, what teacher is doing, how the lesson is being structured, accommodations of ELs, and examples of interactions if possible.

Materials used

13.List/describe materials here

Conclusion of Lesson Student grouping: _____

Start time: _____ End time: _____

14. How does teacher conclude the lesson?

15.Do teachers or students summarize or synthesize observations or topics covered in activities? 🗆 yes 🗅 no

16. How does teacher frame the lesson, or relate it to scientific principles?

Post-observation questions for the teacher (if not in person, then via email)

- 17. What were your objectives for today's lesson?
- 18. How did the lesson go? [What went well? What were you less happy with? What do you look for to see if a lesson is working?]
- 19. How well do the students seem to understand the force and motion materials and today's lesson generally?
- 20.What do you think the students had difficulty with? What do you think they'll still have questions about?
- 21.Did you adapt the lesson for the ELs in your class in any way?

Check type of curriculum materials and identified ELs if necessary

AFTER OBSERVATION

- 22.Overall, what were the strengths of the lesson?
- 23.Overall, what were the weaknesses of the lesson?
- 24.Important things observed not covered in protocol
- 25. Exemplars, overall comments on observed
 - a. Explicit eliciting of student understanding or prior knowledge:
 - b. Structured opportunities for talk:
 - c. Collaborative sense-making discussions, students building on each other's ideas:
 - d. Analyzing or interpreting evidence; basing scientific claims on evidence:
 - e. Teacher and student statements or questions in response to student errors and questions: [Evaluation, correction, probe, elicit other ideas?]
 - f. Modification of activity in response to student difficulties or ideas:
 - g. Activities focused on the academic language of science:

h. Support for the diversity of student language abilities and contributions:

CURRICULUM: COHERENT SCOPE AND SEQUENCING

26.Organization of lesson around a coherent set of related science concepts

🗆 No	No links to	⊔Vague		🖬 Explicit,
opportunity	larger or	references	concepts	frequent links
to observe	more	to one or	explained	to
	general	two	and related	fundamental
	science	science	to activity but	science
	concepts	concepts	little attempt	concepts;
			to make	new concepts
			conceptual	are linked to
			connections	previously
				introduced

Evidence of accomplishment:

eacher:
Introduces activities and lessons in terms of fundamental concepts.
Demonstrates how student observations and thinking relates to larger patterns.
Explores the relationships between concepts.
Discusses further applications and implications with students.
Concludes lessons or activities with references to more general concepts.
itudents:
Understand the scientific purpose of activities.
Mention or discuss fundamental concepts.
Talk about science while doing.

Comments:

27.Opportunities to collect evidence and make sense of patterns

□No	□ Students do	□Activities	Students	□ Students
opportunit	not work with	involve	observe,	regularly
y to	evidence,	hands-on	experiment, or	interpret
observe	observations,	exploration,	make sense of	evidence
	or given	but student	provided data,	and work
	results.	experience	but	with
		is not	interpretations	models. All
		related to	and models are	student
		teacher	provided.	observation
		explanation	"Good"	s are
		s or class	observations	considered
		discussions.	are cited when	data,
			explaining	evaluated
			model or	as such,
			scientific	used to
			principle.	construct or
				test models.

Teacher:

Designs activities that are exploratory, open-ended, investigations. Gives students opportunities to summarize, compare, and theorize. Asks students to take a position on different explanations being discussed. Solicits or identifies questions that need to be answered to resolve contradictions or disagreements.

Students:

Collect and report their observations or findings.

Are given opportunities to try variations on the same principle and compare. Are asked to hypothesize about their findings, make guesses about scientific principles.

Actively work with models and representations, e.g. enacting, building, illustrating.

28.Instruction designed to reach explicit, grade-appropriate learning goals

□No opportunit y to observe	Goals obscure or inappropriate for this grade	□Grade- appropriate goals are stated, but the relationship between activities and goals is haphazard or unclear.	A basic relationship between activities and grade- appropriate goals is established.	Activities are designed to meet explicit and specific, grade- appropriate goals in a sequenced, comprehensiv e way.
--------------------------------------	--	--	---	--

Evidence of accomplishment:

Implements instructional activities to pursue explicitly-stated, grade- appropriate learning goals. Relationship of activities to learning goals is clear and explicit. Assesses student understanding, checking if students are achieving learning goals and ready for new materials or activities. Activities within a lesson explore different aspects of the topic and/or build in complexity in order to reach learning goals. Students: Carry out instructions and start activities with minimal delay.
Relationship of activities to learning goals is clear and explicit. Assesses student understanding, checking if students are achieving learning goals and ready for new materials or activities. Activities within a lesson explore different aspects of the topic and/or build in complexity in order to reach learning goals. Students: Carry out instructions and start activities with minimal delay.
Assesses student understanding, checking if students are achieving learning goals and ready for new materials or activities. Activities within a lesson explore different aspects of the topic and/or build in complexity in order to reach learning goals. Students: Carry out instructions and start activities with minimal delay.
Activities within a lesson explore different aspects of the topic and/or build in complexity in order to reach learning goals. Students: Carry out instructions and start activities with minimal delay.
complexity in order to reach learning goals. Students: Carry out instructions and start activities with minimal delay.
Students: Carry out instructions and start activities with minimal delay.
Carry out instructions and start activities with minimal delay.
Use and refer to concepts and ideas from previous activities and lessons in
solving new problems.

Comments (too challenging? not challenging enough?):

29.Classroom activities, assignments, and interactions incorporate accurate and precise science content

No	□Very	□Somewhat	Mostly	□Accurate,
opportunity to	inaccurate.	inaccurate.	accurate and	clear. and
observe	unclear, or vague	unclear, or vague	clear, somewhat precise	precise

Evidence of accomplishment: Teacher: Explains science accurately. Explains and uses concepts with precision. Maintains clear distinctions between different concepts and processes. Wall postings and written materials are clear and accurate. Activities and assignments are clear and scientific ideas represented are accurate.

30.Support for student learning of academic science talk

□No	□No attempt to	A few new	□Science	□Teacher
opportunit y to observe	introduce new science words or to practice or discuss	vocabulary words are formally introduced but not	vocabulary is introduced and teacher supports use in context, but	introduces and expects use of science words in
	science discourse forms	used in context.	there is no discussion of science discourse forms.	context; students discuss and practice science discourse forms.

Evidence of accomplishment:

Teacher:

Uses language that is appropriate for elementary students. Announces clearly defined language objectives, e.g. new science words. Highlights, discusses and reinforces new and familiar science words. Makes regular use of scientific terms in appropriate contexts. Introduces and practice science-specific discourse forms and structures. Discusses and practices a variety of academic literacy skills (analyzing, comparing, summarizing). Cites evidence to support claims, modeling evidence-based reasoning. Coordinates activities that create meaning with activities to practice language (reading, writing, listening, and/or speaking). Students: Use appropriate and precise science vocabulary. Practice and apply science discourse forms. Use discourse forms and vocabulary with increasing precision.

Comments:

31.Instruction anticipates and addresses difficulties students at that grade level often encounter

□No	□No	□A few	□Some conceptual	□Teacher
□ No opportunit y to observe	No expressed awareness or anticipation of student difficulties	□ A few difficulties are anticipated, but these tend to be practical rather then conceptual (e.g. how to use the bulb holders).	□ Some conceptual misunderstanding s are anticipated during instruction but not discussed. Teacher tells them 'the way it is' without exploring student understanding.	□ Teacher explicitly anticipates and addresses a range of common difficulties and discusses 'tricky aspects' with
				students.

Teacher: Poses questions or assigns tasks that target common misconceptions. Poses questions or assigns tasks that create cognitive conflict with misconceptions. Lesson content addresses common misconceptions identified in PD or literature. Students:

Have opportunities to discuss misconceptions and reasoning behind errors.

Common difficulties:

32.Uses a variety of models, metaphors, and representations to support students' conceptual understanding

	leacher does	leacher refers	leacher	leacher and
opportunit	not use models,	to	introduces one	students use or
y to	metaphors, or	representations	or two models	create a range
observe	representations	or drawings in	or	of models,
	during lesson.	curriculum	representations	metaphors, and
	Lesson focuses	materials when	that are not in	representations
	on	explaining	the materials	to map
	manipulatives	concepts.	and discusses	conceptual
	OR	These are not	them with	understanding
	computations.	discussed or	class.	and illustrate
		tested.		observations.

Evidence of accomplishment:

Teacher: Employs a ra

Employs a range of models or metaphors to explain different aspects of the same concept.

Encourages students to create representations that demonstrate their understanding.

Discusses the strengths and limitations of particular models or metaphors. Encourages students to create and test models with real data.

Students:

Use metaphors in their own explanations.

Test and create representations and models.

Ask questions about models and representations and their limitations.

Comments:

ASSESSMENT: MONITOR AND DIAGNOSE STUDENT UNDERSTANDING

33. Eliciting and paying close attention to details of student reasoning and understanding during lesson

□No	□Teacher	□Teacher	□Teacher	□Teacher
UNO opportunit y to observe	leacher does not attempt to elicit or understand student reasoning during	□ leacher occasionally asks students to explain answers when they are	leacher elicits students' thinking and reasoning for both correct and incorrect answers, but	leacher frequently elicits student understanding , illuminating similarities and differences in
	lesson.	incorrect.	does not ask further questions or discuss differences.	student reasoning.

Evidence of accomplishment:

Teacher: Elicits, probes, and assesses student reasoning. Cites student reasoning, recognizing alternative approaches without immediately evaluating. Recognizes the logic of students' science ideas even when they contain errors. Compares different student approaches and reasoning, highlighting different aspects of the problem and different student insights. Takes opportunities to observe students and pose probing questions during small group or individual time. Students: Explain their thinking to teacher and to each other. Ask each other about reasoning in group activities.

34. Activities and questions reveal students' understanding in depth and detail

□No	Activities do	□Activities	Activities often	□Activities
opportunit	not require	occasionally	ask students	and tasks
y to	students to	include	to explain	are
observe	explain their	tasks that	conclusions or	designed to
	answers or	allow	procedures,	help
	make their	aspects of	but student	students
	reasoning	student	thinking is not	make their
	explicit.	thinking to	revealed in	reasoning
		be inferred.	much detail or	and ideas
			depth.	explicit in
				depth and
				detail.

Evidence of accomplishment:

Teacher:
Require students to explain or demonstrate their reasoning during activities and discussions in order to assess their conceptual understanding.
Uses assessments as opportunities to explore the logic behind errors.
Designs activities to require students to make choices in their approach to problems and to make their choices and reasons explicit.
Students:
Approach assessments as challenging activities rather than as 'tests'.

Comments:

35.Multiple, v	aried opport	tunities to o	demonstrate	understanding	and explain
thinking				-	

□No	Limited	□Students are	□Some	Multiple and
opportunit	opportunities	sometimes	variety in	varied
y to	of any kind	expected to	the ways	opportunities
observe	for students	share their	students	for students
	to	answers	can share	to
	demonstrate understandin g	verbally when asked; students who cannot articulate well are disadvantaged	answers to given questions; e.g., by constructin g or drawing individually or as a group	demonstrate understandin g and science ideas; students with difficulties are accommodat ed and
				encouraged

Evidence of accomplishment:

Teacher:

Provides opportunities for students to demonstrate what they know in multiple ways and formats (showing, telling, drawing, building), including in L1. Differences in styles and abilities are accommodated. Students: Have opportunities to take the role of self- or peer assessors, establishing or

Have opportunities to take the role of self- or peer assessors, establishing or discussing criteria, evaluating work, and revising the product based on feedback.

36. Focus is on reasoning underlying students' answers, rather than correctness

□No opportunit y to observe	□ Teacher focuses on correct answers and immediately evaluates student	□Teacher occasionally asks for reasoning behind incorrect answers, but	□Teacher sometimes elicits student reasoning without immediatel	Teacher elicits and cites student thinking, highlighting student logic as part of discussion
	student contributions.	answers, but only as part of negative evaluation.	immediatel y evaluating.	as part of discussion and probing for details.

Evidence of accomplishment:

Teacher:

Respects and accommodates the variety of correct and incorrect contributions that students make to sense making discussions. Doesn't immediately evaluate student responses as right or wrong but examines (or asks other students to examine) the means by which the student arrived at the answer.

Recognizes the logic of students' science ideas even when they contain errors. Does not accept explanations with only cursory evidence or attestation, but explores alternative explanations and questions before making initial conclusions.

Students:

Develop understanding in an ongoing process of understanding—not simply by responding with answers.

Present multiple ideas and perspectives, without immediately evaluating each other.

Comments:

INSTRUCTION: ADAPT TEACHING TO SUPPORT STUDENT SCIENCE LEARNING

37.Instructional plans modified during instruction to adapt to emergent conditions

□ No	□No	□Teacher	□Teacher	□Teacher
opportunit	acknowledgem	responds to	takes time	adapts and
y to	ent of	student	to address	modifies
observe	emergent	difficulties or	student	activities and
	conditions,	ideas by re-	difficulties	instruction in
	including	explaining or	and need	response to
	obvious	repeating	for greater	student ideas
	boredom or	previous	challenges.	and
	frustration:	instructions.	primarily	difficulties.
	teacher directs	but does not	individually	improvising
	all activities	noticeably	or on the	and adapting
	and/or holds to	modify	side.	activities as
	script	instruction or	5.001	needed
	Script	activities		needed.

Teacher:

Modifies instructional plans as needed to address factors that emerge in the course of teaching.

Will 'deviate from the script' based on what arises, using alternate examples, taking up student ideas and exploring misconceptions.

Uses alternate activities to address specific misconceptions as they arise. Bases instructional decisions on several considerations including learning goals, students' prior and current knowledge and difficulties, available classroom resources, as well as strengths and limitations of instructional activities, models, metaphors, and representations.

Students:

Suggest activities to teacher.

Ask complex (how or why) questions of teacher and each other. Express confusion as a conversational opener rather than as an

embarrassment, complaint, or problem.

38.Opportunities for sense-making discussion and reasoning in depth

□No	□Teacher	□Teacher	□Teacher	□Teacher
opportunit y to observe	provides no opportunities for extended discussion; students do not collect evidence or record observations as data.	provides very limited opportunities for discussion; students investigate and observe but do not discuss in groups or with class.	encourages discussion in groups. In whole class discussions, conversational exchanges are short and teacher- directed.	encourages extended exchanging of ideas, acting as facilitator.

Evidence of accomplishment:

Teacher:

Encourages students to work out patterns from the evidence and discuss and compare findings.

Provides guidelines and guidance for interaction in inquiry groups, e.g. roles, scaffolding, informal check-ins.

Grants intellectual authority to the reasoning process, rather than own status as teacher or that of written materials.

Allows questions to develop and solutions to unfold.

Students:

Take advantage of a variety of opportunities to talk about the science (pairs, groups, whole class).

Discuss ideas without expecting or waiting for teacher evaluation after each contribution.

Collaborate to work out problems, difficulties, and confusion.

Discussion leads to a more general understanding of how and why.

Explore real world applications and implications of classroom science.

Comments:

39.Adaptation of instruction based on students' prior and current knowledge and reasoning

□No	Teacher does not	□Teacher	□Teacher	□Teacher
opportunit	adapt instruction,	offers some	reviews	reviews
y to	in spite of	options or	previous	previous
observe	inappropriateness	help for	learning	lessons and
		students who	and ensures	frequently
		missed or did	that all	checks for
		not	students	understanding
		understand	know	, adapting
		previous	enough to	activities as
		lessons, or	participate,	necessary for
		who are	but some	different
		having	students	levels of
		serious	are under-	knowledge
		difficulties.	challenged.	and
				engagement.

Teacher:

Elicits and assesses student understanding and prior knowledge. Frequently checks for understanding and adapts activities as necessary.

Tailors instruction and provides alternatives for different student interests. Students:

Make few requests for clarification.

Are comfortable sharing what they understand and explaining what is difficult or unclear.

Seem to understand what they are supposed to do.

Carry out instructions and start activities with minimal delay.

40. Close attention to student difficulties

□ No opportunit y to observe	No apparent awareness or acknowledgem ent of student difficulties	□ Teacher occasionally asks if students understand, expecting primarily yes/no answers, and responds to student difficulties or ideas by repeating explanations.	□ Teacher regularly checks to see if students comprehend instructions and materials but does not probe for deeper conceptual understanding	□Teacher takes an interest in student difficulties as challenging aspects of the science; seeks conceptual source; uses difficulties as a
		explanations.		as a resource.

Evidence of accomplishment:

Teacher:

Uses misconceptions as a way to talk about tricky aspects of the science. Encourages students to think about misconceptions and talk about confusing aspects as part of the discussion. Asks probing questions to help make conceptual misconceptions explicit.

Students:

Confidently ask questions when they are confused, raising difficulties as conversational openers.

Comments:

41.Support for student interpretation of evidence, hypothesizing and predicting

□No	□ Students work	□Students	□ Students are	□Students
opportunit y to observe	with manipulatives (balls, slides, time/distance graphs), but are not given the opportunity to make predictions or interpret evidence.	are occasionally encouraged to guess or predict, but these are usually simplistic yes/no predictions.	regularly asked to make more complex hypotheses. They record observations and are familiar with the steps of the scientific method.	hypothesize and make complex predictions based on previous work. Hypotheses are tested with student data.

Teacher:

Introduces and discusses investigative questions with students or works with students to generate investigative questions.

Solicits predictions and explanations for observed results.

Asks students to take a position on different explanations being discussed. Clarifies student positions, assumptions, and beliefs about science. Encourages students to use the language and discourse of the scientific method.

Students:

Report their observations or findings.

Hypothesize about their findings, make guesses about scientific principles. Compare and evaluate models and representations, based on own observations and experiences.

Actively work with models and representations, e.g. enacting, building, illustrating.

42. Accessibility of instruction and support for the variety of learners

□No	□No	Recognition	□Teacher	Teacher and
opportunit	recognition or	of linguistic,	verbally	classroom
y to	accommodati	individual, or	encourage	culture are
observe	on of different	learning	s all	supportive of
	abilities,	differences,	students	a variety of
	linguistic,	but no	to	abilities and
	cultural	support or	participate	differences,
	differences;	accommodati	and helps	using diversity
	non-	on from	ELs and	as a resource
	mainstream	teacher	weaker	and valuing
	students'		students	and
	participation		on the	accommodatin
	limited		side.	g different
				types of
				participation.

Evidence of accomplishment:

Teacher:

Uses diversity as a resource, incorporating language and culture in activities, active accommodation.

Links concepts to students' linguistic and cultural backgrounds.

Uses a variety of techniques to reach all kinds of learners (modeling, visual, hands on activities, demonstrations.

Conducts checks for understanding in real time.

Consistently provides sufficient wait time for student responses.

Students:

Active participation by speakers of other languages, equitable participation by all ethnic groups.

Respect and attend to each other's reasoning.

Help each other reason and articulate, voluntarily and when directed.

