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Abstract

Scale score measures are ubiquitous in the psychological literature and can be used as both 

dependent and independent variables in data analysis.  Poor reliability of scale score measures 

leads to inflated standard errors and/or analytic invalidity.  Cronbach’s α is often employed to 

assess the reliability but, due to its rather strong assumptions, can be a poor indicator.  For panel 

data, an alternative approach is the simplex method; however, it too requires assumptions that 

may not hold in practice.  In this paper, a new estimator of reliability is proposed which relaxes 

the assumptions of both Cronbach’s α and the simplex estimator and, in that sense, is a 

generalization of both estimators.  The virtues of new method are illustrated using data from a 

large scale panel survey. 

1. Introduction

Scale score measurements (SSM’s) are very common in psychological and social science 

research.  As an example, the Child Behavior Checklist (CBCL) is a common SSM for 

measuring behavior problems in children (see Achenbach, 1991a, 1991b for the version of the 

CBCL used in this paper).  It consists of 118 items on behavior problems, each scored on a 3-

point scale: 1 = not true, 2 = sometimes true and 3 = often true of the child.  The CBCL Total 

Behavior Problem Score is an empirical measure of child behavior computed as a sum of the 

responses to the 118 items.  The usefulness of any SSM in data analysis depends in large part on 

its reliability. An SSM having poor reliability is infected with random errors that obscure the true

construct underlying the measure.  SSM’s having good reliability are relatively free from random

error which enhances their validity as an analysis variable (see, for example, Biemer and Trewin,

1997).  For example, as reliability decreases, the standard errors of estimates of means, totals and

proportions increase.  In addition, for simple linear regression, the slope coefficient is biased 
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toward 0 if the explanatory variable is not reliable.  Thus, assessing scale score reliability is 

typically an integral and critical step in the use of SSM’s in data analysis.

The most common method for assessing scale score reliability is Cronbach’s  (Hogan, 

Benjamin, & Brezinsky, 2000).  A number of software packages for data analysis (for e.g., SAS, 

SPSS, and STATA) provide subroutines for computing alpha with relative ease.  There are 

numerous examples in the literature of using  for assessing the reliability of scale scores (see, 

for example, Burney & Kromrey, 2001; Sapin, et al., 2005; Yoshizumi, Murakami, & Takai, 

2006).  One reason for ’s ubiquity is that few alternative methods for assessing reliability in 

cross-sectional studies are available.  This despite the fact that  has been severely criticized in 

the literature due to the rather strong assumptions underlying its development as an indicator of 

reliability (see, for example, Bollen, 1989, p.217; Cortina, 1993; Green & Hershberger, 2000; 

Luke, 2005; Zimmerman & Zumbo, 1993).  

It is well-known that  tends to overestimate reliability when the SSM items are subject to 

inter-item correlated error (Green & Hershberger, 2000; Lucke, 2005; Raykov, 2001; Rae, 2006; 

Vehkalahti, et al, 2006; Zimmerman, et. al, 1993; Komaroff, 1997).  This assumption is violated,

for example, if respondents try to respond consistently to the items in scale rather than 

considering each item independently of the others and providing the most accurate answer to 

each. For items which are prone to social desirability effects, errors across items may be 

correlated if respondents force their responses to be more socially acceptable than the truth may 

seem. Respondents may also respond as they think they should rather than completely honestly, a

form of acquiescence bias.  These situations tend to induce positively correlated errors which 

will positively bias α; i.e., reliability as measured by α will appear higher than it truly is.

Cronbach’s α can also underestimate reliability if the items in an SSM do not all measure the 

same construct (Raykov, 1998; Raykov & Shrout, 2002; Komaroff, 1997).  For example, an 

SSM that is intended to measure depression may include some items that measure anger or pain 

instead.  In addition, the questions may be worded in such a way that respondents interpret the 

questions erroneously and report behaviors or attitudes which are inconsistent with the construct 

of interest.

For panel1 data, there are alternatives to alpha that rely on assumptions that are more easily 

satisfied in practice.  One of these is the simplex estimator of reliability (Wiley and Wiley, 1970).

1 A panel study collects data from the same subjects (i.e., a panel) at different points in time, usually at regular 
intervals.
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Unlike α, the simplex estimator is a function of the sum score itself rather than individual scale 

items and, therefore, it accuracy is not affected by inter-item correlated error.  When the scale 

items are subject to correlated error, simplex reliability estimates will tend to be smaller than 

Cronbach’s α which, as noted previously, is inflated. This is not to say that simplex estimates are

always more accurate than Cronbach’s α since the simplex model assumptions can also be 

violated.  This raises a question for the analyst who computes both estimates:  if the estimates 

differ considerably, which has the greater accuracy (or validity) and should be reported?  This 

question should be address for each application since the model assumptions are satisfied to 

varying degrees depending on the SSM and the study design.  

This paper proposes an approach, referred to as the generalize simplex method, for 

estimating scale score reliability for panel data under more general assumptions than those 

required for either α or the simplex estimator. It will be shown that, by imposing parameter 

restrictions on the model underlying this new estimator, estimates of reliability that are consistent

with Cronbach’s α, the simplex method or even several other useful simplex-like approaches can 

be produced.  This provides the analyst with a number of options for reporting SSM reliability.  

As an example, in situations where its quality can be assured, Cronbach’s α may be preferred

over more complex estimators of reliability since it is widely used and easy to compute. The 

generalized simplex method can be used to test whether the assumptions underlying α or several 

alternative estimators of reliability hold for a particular SSM.  In cases where α’s assumptions 

are rejected, our approach provides a process for identifying the simplest method for computing 

reliability whose quality can be verified by formal tests of significance.  In some situations an 

analyst may prefer to compute the generalize simplex estimate of reliability without testing 

whether simpler alternatives are available.  However, it can be instructive to identify situations 

where the assumptions underlying α and the traditional simplex model do not hold to inform 

future uses of these methods.

For example, to the extent that SSM’s perform similarly across a range of study settings and 

designs, testing the assumptions underlying reliability estimation would be quite useful to 

analysts who contemplate using the same or similar SSM’s in other data sets. As an example, if 

the assumption of uncorrelated errors is rejected for an SSM in one particular study, that should 

serve as a warning that this assumption may be questionable for this SSM across studies.  In 

some situations, it may be possible to modify the data collection methodology to reduce inter-
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item correlated error for the SSM.  At a minimum, it would forewarn analysts that the use of 

Cronbach’s α for assessing the SSM’s reliability is suspect.

The next section briefly reviews the concept of reliability, particularly scale-score reliability, 

and introduces the notation and models that will be needed for describing the methods.  We show

that Cronbach’s α and the simplex method are essentially special cases of the generalize simplex 

method which is uses the method of split-halves (Bollen, 1989, p. 213-215).  The methodology 

for testing the assumptions underlying alternative estimates of reliability also developed.  In 

Section 3, we apply this methodology to a number of scale score measures from the National 

Survey of Child and Adolescent Well-being (NSCAW) to illustrate the concepts and the 

performance of the estimators.

2. Scale Score Reliability

Observations obtained in a survey are subject to errors which may be attributable to a number

of error sources including survey questions, respondents, interviewers and data processing 

procedures.  These error sources impart both systematic and random errors to the measurements. 

For a particular data item, assume there is a true value, , for the ith individual in the survey; 

however, rather than observing , we observe .  The difference is the measurement 

error; that is, .  For the ith individual, the mean of the ei’s over hypothetical repetitions

of the measurement process is the systematic component of error denoted by ; i.e., E(ei|i) = . 

The sum of an individual’s true value and this systematic component, i.e. , is called the

true score of the individual. It is simply the mean of the hypothetical distribution of responses 

for an individual.  These assumptions lead to the error model

or equivalently,

where  and .  Define the variance of the ’s as 
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If we further assume that  and , then the unconditional variance of

  is given by

Reliability analysis is concerned with the amount of variable error that is present in the 

process for measuring the true value, μi.  The reliability ratio is

(see, for example, Fuller, 1987, p. 3) defined as true score variance divided by the total variance 

of the measurements (i.e., the sum of true score and random error variance).  Reliability is 

essentially the proportion of total variance that is true score variance.  When R is high, we say 

the measurement process is reliable; i.e., the variation in the measurements is due mostly to the 

variation in the true scores of individuals in the population.  When R is low, we say that the 

measurement process is unreliable; that is, the variation in the measurements is mostly random 

error or “noise.”  

The same concepts can be applied to an SSM (or multi-item scale) which can be defined 

broadly as any sequence of questions that assesses facets of the same construct to produce a scale

score, S.  For our purposes, S is defined as the unweighted sum of responses to the questions 

comprising the SSM.  Each item in the scale is assumed to be measured on an ordinal scale (for 

e.g., a Likert scale) and is an indicator of the same latent construct.  If we assume that the 

measurement errors for the items are uncorrelated (i.e., no inter-item correlated error), the 

reliability of the score S can be estimated as a function of the inter-item correlations. This is the 

basis for Cronbach’s α method of estimating the reliability of S (Cronbach, 1951).

The next sections describe three models for estimating scale score reliability beginning the 

with simplest approach, Cronbach’s α.  A second method, referred to as the simplex method, will

then be introduced that can be applied when the same construct is measured at three or more time

points or panel waves.  Finally, we develop the generalized simplex approach which also 

requires three or more waves of data.  In addition, it assumes that the SSM can be divided into 

two psychometrically equivalent SSM’s using the method of split halves.  As we shall see, the 

alpha and simplex models are special cases of this generalized simplex model.
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2.1 Estimating Reliability Using Cronbach’s α

To fix the ideas, a four-item SSM will be assumed initially and subsequently generalized for 

k >2 items.  The assumptions underlying Cronbach’s α can be illustrated by the simple factor 

analysis model in Figure 1 and corresponding model equations as follows:

where  denote the responses to the four items for a particular individual, t denotes 

the true score which is the same for all four indicators and  are random error terms.  The 

subscript, i, denoting the individual has been dropped as a notational convenience.   The ’s are

scaling coefficients to adjust for differences in the scales of measurement among the items. 

[INSERT FIGURE 1 ABOUT HERE]

The model in Figure 1 also assumes that the measurement errors, ’s are uncorrelated between 

items; i.e.,  for any two items . This assumption is indicated by the lack 

of arrows between the ’s in the figure. In addition, Cronbach’s α assumes that the four 

measurements are parallel; that is, and , for all j.  This implies that all four 

items are measured using the same scale of measurement and are subject to the same error 

distribution.

Now generalizing to k items, define the scale score, S, for a k-item scale as .  From (6),

it follows that 

The first term on the right side of (7) is the true score variance and the second term is the error 

variance.  Under this model, the reliability of S is given by
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or

Note from (9) that the error variance component is divided by k, the number of items in the scale 

which implies that reliability increases as the number of items in the scale increases.  Thus, 

according to the assumptions of Cronbach’s α, a 50-item scale will be more reliable than a scale 

consisting of a subset of k<50 of these items. Failure of this relationship between k and R to hold 

is evidence that the assumptions underlying Cronbach’s α also do not hold.

Under these assumptions, an unbiased estimator of R in (9) is Cronbach’s α  given by

where is an estimate of  and is an estimate of .  For a simple 

random sample of size n, the an unbiased estimator of is

and an unbiased estimator of  is identical to (11) after replacing by  and

.  

In a panel survey where S is computed at each wave, let Sw denote the score at wave w and

the corresponding estimate of alpha at wave w.  In practice, α is estimated separately and 

independently for each wave. The method of estimating reliability discussed next uses 

information both within and across waves to assess reliability at each wave.

2.2 Estimating Reliability using the Simplex Model
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For panel data, scale score reliability can also be estimated using the so-called simplex model

(Heise, 1969; Heise, 1970; Wiley & Wiley, 1970; Jöreskog, 1979).  The simplex method uses a 

longitudinal structural equation model to estimate scale score reliability at each wave using the 

scale scores themselves (i.e., the ’s) rather than the responses to the individual items 

comprising the scale.  This is a key advantage of the simplex model over Cronbach’s α:  since it 

operates on the aggregate scale scores, correlations between the items within the scale do not 

bias the estimates of reliability. 

To use this method, the same scale must be available from at least three waves of a panel 

survey and the scores must be computed identically at each wave.  The covariation of individual 

scores both within and between the waves provides the basis for an estimate of the reliability of 

the measurement process.  In this sense, the simplex model is akin to a test-retest reliability 

assessment where the correlation between values of the same variable measured at two or more 

time points estimates the reliability of those values.  An important difference is that while test-

retest reliability assumes no change in true score variance or error variance across repeated 

measurements, the simplex model allows either true score variance to change while holding error

variance constant (referred to as the stationary error variance assumption) or vice versa (referred

to as the stationary true score variance assumption) according to the situation. Unfortunately, 

allowing both true score and error variances to vary by wave leads to a non-identified model 

(i.e., insufficient number of degrees of freedom to obtain a unique solution to the structural 

equations).  

One early version of the simplex model (Wiley & Wiley, 1970) assumed stationary error 

variance and, thus, allowed true score variance to change by wave which seems plausible for 

most practical situations.  In the present work, both types of assumptions (stationary true score 

variance and stationary error variance) are considered.  

The original simplex model for three repeated measurements is illustrated in Figure 2.

[INSERT FIGURE 2 ABOUT HERE]

This model is composed of a set of measurement equations and structural equations.  The 

measurement equations relate the unobserved true scores to the observed scores.
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for w = 1,2,3 where  is the observed score,  is the unobserved true score (i.e., sum of the k 

item true scores) and the  is measurement error (i.e., sum of the k item error terms) at wave 
w=1,2,3. 

The structural equations define the relationships among true scores.  From Figure 2, we see 

that

where  is the effect of the true score at time 1 on the true score at time 2 and  is the effect 

of true score at time 2 on true score at time 3.  The  are the parameters that measure change 

in true score from wave w to wave w+1.  The terms  and  are random error terms that 

represent the deviations between  and , sometimes referred to as random shocks.  

Note that  is a component of true score variance at time w; for example,  

and

Assumptions of the simplex model include, for all w, w'=1,2,3 

For identification, the original simplex model assumed stationary error variance, that is,

(see Wiley and Wiley, 1970). Stationary true score variance can be substituted for (19) and will 

be discussed subsequently
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The simplex model estimates the parameters , , , , , and

.  The reliabilities for the three waves are given by the following: 

(10)

Note that equations (18)-(20) all have the same form as (5).    If desired, (19) and (20) may be 

rewritten in terms of , , , , , and  using (14) and (15).

Under the Wiley & Wiley simplex model, the error variances are stationary (17) and the true 

score variances are non-stationary.  However, there are situations when the error variances 

should also be non-stationary.  For example, the information collected on children for the CBCL 

may be more subject to random error as the children age.  Thus, the error variance at Waves 2 or 

3 could be somewhat larger than the error variance at Wave 1.  As previously noted, specifying 

both non-stationary true score and error variances will yield a non-identified model.  Thus, if 

non-stationary error variances are specified, then stationary true score variances must be 

specified in order to achieve an identified model2.

To illustrate, Table 1 provides estimates of reliability for the Youth Self-Report for three 

waves of the NSCAW.  Cronbach’s α and the simplex reliability estimates are provided under 

both the assumptions of stationary error variance and stationary true score variance.  The sample 

sizes varied somewhat for each estimate from 1200 to 1800 cases.  Differences as small as 0.05 

can be interpreted as significant.  Note that the simplex estimates vary considerably within wave:

from 0.57 to 0.77 in Wave I.  The simplex estimates tend to be smaller than α, substantially so in 

some cases which suggests that inter-item correlation could be inflating the α estimates of 

2 It is also possible to obtain an identified model assuming the reliability ratio is constant over waves (i.e., stationary 
reliability).  The case was considered in our work but not reported here to save space.  This produced reliability 
estimates that were constant across waves and approximately equal to the average reliability obtained by the 
alternative stationarity assumptions.  
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reliability.  These results also illustrate the degree to which estimates of R can vary depending 

upon the method used.

Although the simplex model is unaffected by correlated error, it can still be biased due to the 

failure of other assumptions made in its derivation.  As an example, if both error variance and 

true score variance, the simplex estimates of reliability will be biased regardless of which of 

these is assumed to be stationary.  As an example, suppose that error variances increase over 

time while true score variance remains constant.  In this situation, the reliability ratio actually 

decreases over time since the denominator increases while the numerator remains constant.  The 

simplex model, under the stationary error variance assumption, will attribute the increase in total 

variance across time to increasing true score variances.  This means that reliability will appear to 

increase over the time – just the opposite of reality.

[TABLE 1 ABOUT HERE]

The simplex model can also be contaminated to some extent by correlated errors among the 

waves since it assumes that the score-level errors are independent across time.  As an example, if

the waves are spaced only a few days apart, subjects may remember their answers from the last 

interview and repeat them rather than providing independently derived responses.  If instead the 

time interval between waves is a few weeks or more, the risk of recall and consequently 

between-wave correlated error is much reduced.  This may not eliminated the inter-wave 

correlated error, however.  For example, if the subjects tend to misinterpret the items in a scale in

the same way at each wave, response errors, even at the aggregate scale-level, could be 

correlated across waves. 

Finally, another assumption of the simplex model is that the ratio of the current wave’s true 

score to the prior wave’s true score is a constant apart from the random shock terms (see Figure 

2).  This assumption may not hold in general.  For example, some items in the CBCL are specific

to a child’s age and these items are substituted by other items that are more appropriate for the 

child as the child ages.  Thus, the assumption that the true scores of the scales appropriate to 

children of all ages satisfy model assumption may be violated and, if so, the simplex model 

estimates may be unpredictably biased. 

The next section introduces a more general model that subsumes the models used to 

generate the estimates Table 1 as special cases.  An important additional feature of the model is 

that it is identified even if true score and error variances are not stationary; that is, when both are 
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allowed to vary across waves.  We also provide an approach for testing which set of model 

restrictions are satisfied in order to choose the best estimates of reliability.

2.3 The Generalized Simplex Model for Estimating Scale Score Reliability

Using the method of split halves (Brown, 1910; Spearman, 1910), a more general model for 

estimating scale score reliability can be formulated which relaxes many, but not all, of the 

assumptions associated with the α and simplex models.  Under very general assumptions, this 

model will provide estimates of reliability for each half of a scale for each wave of data 

collection.  The half-scale reliability estimates for each wave can then be combined to produce a 

full scale estimate of Rw using a formula similar to the Spearman-Brown Prophecy formula 

(Carmines & Zeller, 1979) that we have generalized for use when the two half-scales have 

correlated errors.  To simplify the exposition of the model, we assume three panel waves are 

available; however, extending the model to more than three waves is straightforward.

Suppose the items comprising the score at wave w denoted, Sw, can be split into two 

equivalent halves.  One approach might assign odd numbered items to one half and even number 

items the other half. However, any method for dividing the items that satisfies the subsequent 

model assumptions is acceptable.  Let Sw1 and Sw2 (w = 1,2,3) denote the scores corresponding to 

the two halves.  The path model summarizing the assumptions for the split halves model is 

shown in Figure 3.  Note its resemblance to the model in Figure 2 with the only difference being 

the single score Sw has been replaced by Sw1 and Sw2 corresponding to the split halves.  Analogous

to the simplex model, the generalized (split halves) simplex model assumes the following:

To be identified, the generalized simplex model requires the restriction that the covariance 

between the split halves within a wave is constant over time; i.e.,

, say, for all .  We must further assume that the true 

score variances are equal across the split-halves; that is, = , say. Let  

and  denote the estimates of the true score and error variances, respectively, for split-halves 
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at wave w and let  denote the estimate of the split-half error covariance at wave w.  Then an 

estimator of the reliability of the score, Sw, is

Except for the covariance term in the denominator, this formula is equivalent to the well-known 

Spearman-Brown prophecy formula (Carmines & Zeller, 1979).

This model can be viewed as a generalization of both α and the simplex models. First, like 

the simplex model, it is not necessary to assume uncorrelated item-level errors within waves.  In 

addition, the model allows for both non-stationary true score and error variances. Imposing the 

restriction =0 will produce estimates that are consistent with Cronbach’s α.  Reliability 

estimates which are consistent with the simplex model can be produced by specifying either 

stationary true score variance, error variances or both and removing the constraint = 0.  In this

manner, the model can be used in situations where neither α nor the simplex models are 

appropriate.  In these situations, this generalized simplex model will provide better estimates of 

Rw than either the α or the simplex models.  The generalized simplex model can be restricted to 

test some of the key assumptions of both alternative models:  uncorrelated item errors, stationary 

true score variances and/or stationary error variances.  

[INSERT FIGURE 3 ABOUT HERE]

3. Application:  Measures of Child Well-being

In this section, we consider an application of the models in the preceding section for 

estimating scale score reliability for a number of SSM’s obtain in the National Survey of Child 

Adolescent Well-being (NSCAW).  The NSCAW is a panel survey of about 5100 children who 

were investigated for child abuse or neglect in 87 randomly selected U.S. counties (Dowd, et al, 

2004).  An important component of the data quality evaluation for this survey was the 

assessment of reliability for all the key SSM’s.  Biemer, et al (2006) provided estimates for more

than 30 SSM’s using both Cronbach’s α and the simplex model assuming stationary true score 

variances, stationary error variances or both.  A representative subset of these scores will be 

considered here including:  the Child Behavior Checklist (CBCL), Teacher Report Form (TRF), 
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Self-Report Instrument for Middle School Students (RAPS-SM), the Youth Self-Report (YSR) 

and the Short-Form Health Survey (SF-12).

Table 2 presents the reliability estimates and their standard errors for 19 SSM’s and seven 

models: 

1. simplex model with stationary error variance (referred to as the original simplex model), 

2. simplex model with stationary true score variance, 

3. Cronbach’s α, 

4. generalized simplex model without stationarity constraints, 

5. generalized model with stationary true score variance, 

6. generalized model with stationary error variance, and 

7. generalized model with uncorrelated errors and without stationarity constraints.  

Almost universally, the original simplex model estimates are lower than the Cronbach α 

estimates.  There are a few exceptions, specifically some of the RAPS scores, where the 

estimates are not markedly different across these models.  Noted that for cases where the simplex

estimate assumptions matter, reliability estimates tend to decrease over time for the original 

simplex model while the opposite is true for the simplex estimates assuming stationary true score

variance.  To understand why this makes sense, recall that, under our models, total variance is 

the sum of true score and error variance.  If true score variance constrained in the model, then 

any change in true score variance across time will be attributed to a change in error variance. 

Since an increase in error variance will decrease reliability (assuming the true score variance is 

constant), reliability will appear to increase under this constraint.  Likewise, if error variance is 

constrained, then changes in the error variance across time will be attributed to changes in the 

true score variance.  Since an increase in true score variance will increase reliability (assuming 

the error variance is constant), reliability will appear to increase under this constraint.   Thus, the 

two assumptions will produce opposing effects on the reliability.

[Table 2 about here]

Estimates obtained from the generalized models with either stationary true score or stationary

error variance constraints are very close to the simplex models with these same constraints.  The 

magnitude of the reliability estimates is comparable to the original simplex model estimates for 

many measures, but is generally lower for many of the RAPS measures and the SF-12 measures. 

For almost all measures the generalized simplex model with uncorrelated errors produces higher 
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reliability estimates than the generalized model with correlated errors.  The latter estimates are in

close agreement with the α estimates.  Estimates from the generalized simplex model without 

constraints are most similar to the generalized original simplex model.  In fact, the estimates at 

wave 3 are the same or nearly the same for both models.  This suggests that the original simplex 

model may be preferred over both α and the simplex model with stationary true score variance 

constraints in most practical situations

Tests of the stationary error variances, stationary true score variance, and uncorrelated error 

assumptions can be done in the context of the generalized simplex model where the models with 

constraints are nested in the larger generalized model without constraints.  Results from these 

tests are presented in Table 3.  For only 2 out of 19 SSM’s – specifically the RAPS Autonomy 

Support measures – could the assumption of uncorrelated errors not be rejected.  For those 

measures, the reliability estimates for the models with and without uncorrelated errors were very 

similar (Table 2).  For seven SSM’s, the assumption of constant error variance could not be 

rejected and for ten measures the assumption of constant true score variance could not be 

rejected. 

These results suggest that α is not an appropriate indicator of reliability for all but 2 SSM’s 

considered in our study.  For neither of the simplex models was performance exemplary.  Both 

suffered some bias owing ostensibly to violations of the stationarity assumption.  If one had to 

choose, the original simplex model estimates seemed to agree more often and closely with the 

estimates from the generalized simplex model.

[Table 3 about here]

4. Conclusions

This analysis suggests that the choice of model and assumptions is critical in the evaluation 

of scale score reliability.  Blind use of Cronbach’s α can and often does lead to an over-

optimistic assessment of the reliability of SSM’s.  When the data allow it, employing the original

Wiley and Wiley simplex model will lead to more valid assessments of reliability.  However, as 

we have shown in Table 3, the assumptions underlying this approach also do not hold for many 

SSM’s.  In such cases, more valid estimates of reliability can be obtained using the generalized 

simplex model.

One limitation of the generalized simplex model is its reliance on split half scores.  For 

SSM’s having a small number of items (say, less than 10), it may not be possible to form 
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equivalent split halves in which case the assumptions of the model would be violated.  In such 

situations, we recommend the original simplex model be used.  Alternatively, the generalized 

model could be applied for more than one split of the items in order to gauge the degree to which

the estimates depend on the particular split used in the analysis.  This practice was not followed 

in the present study.  

References:
Achenbach, T. M. (1991a). Manual for the Child Behavior Checklist 2 - 3 and 1991 profile. 

Burlington, Department of Psychiatry, University of Vermont.

Achenbach, T. M. (1991b). Manual for the Child Behavior Checklist 4 - 18 and 1991 profile. 
Burlington, Department of Psychiatry, University of Vermont.

Biemer, P. P., Christ, S. L., and Wiesen, C. A. (2006). Scale Score Reliability in the National 

Survey of Child and Adolescent Well-being. Internal Report. RTP, NC: RTI International.

Biemer, P.P., and D. Trewin (1997). A Review of Measurement Error Effects on the Analysis of 
Survey Data. In Lyberg, L. et al. (Eds.), Survey Measurement and Process Quality. New 
York: John Wiley & Sons, pp. 603-632.

Bollen, Kenneth A.  (1989).  Structural equations with latent variables. Wiley Series in  
Probability  and Mathematical Statistics. New York: Wiley.

Brown, W. (1910). Some experimental results in the correlation of mental abilities. British 
Journal of Psychology, 3, 296-322.

Burney, D. M., and Kromrey, J. (2001). Initial development and score validation of the 
Adolescent Anger Rating Scale. Educational and psychological measurement, 61, 446-460.

Carmines, E. G., Zeller, R. A. (1979). Reliability and Validity Assessment. In E. G. Carmines 
(Ed.) Sage University Papers Series on Quantitative Applications in the Social Sciences. 
107-117. Newbury Park, CA: Sage.

Cortina, J. M. (1993). What is Coefficient Alpha? An examination of theory and applications. 
Journal of applied psychology, 78, 98-104.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 
297-334.

Dowd, K., S. Kinsey, S. Wheeless, S. Suresh & the NSCAW Research Group (2004).  National 
Survey of Child and Adolescent Well-being:  Combined Waves 1-4 data file user’s manual. 
Research Triangle Park, NC:  RTI International

16



Fuller, W. A. (1987).  Measurment Error Models.  New York: Wiley & Sons.
Green, S.B. and Hershberger, S.L.  (2000). Correlated errors in true score models and their effect

on Coefficient Alpha.  Structural Equation Modeling, 7, 251-270.

Heise, D.R.  (1970).  Separating reliability and stability in test-retest correlation.  American 
sociological review,  34,  93-101.

Heise, D.R.  (1969).  Comment on “The Estimation of Measurement Error in Panel Data”.  
American Sociological Review,  35,  117.

Hogan, T. P., Benjamin, A., and Brezinski, K.L. (2000). Reliability methods: A note on the 
frequency of use of various types. Educational and psychological measurement, 60, 523-
531.

Jöreskog, Karl G.  (1979).  Statistical Models and Methods for Analysis of Longitudinal Data.  In
Advances in Factor Analysis and Structural Equation Models.  Jöreskog & Sörbom, Eds. 
Cambridge, MA: Abt Books.

Komaroff, E. (1997). Effect of simultaneous violations of essential -equivalence and 
uncorrelated error on coefficient . Applied psychological measurement, 21: 337 - 348.

Lucke, J.E. (2005). ”Rassling the hog”: The influence of correlated item error on internal 
consistency, classical reliability, and congeneric reliability. Applied psychological 
measurement,. 29, 106-125.

Rae, G. (2006). Correcting Coefficient Alpha for correlated errors: Is  a lower bound to 
reliability? Applied psychological measurement, 30, 56-59.

Raykov, T. (1998). Coefficient alpha and composite reliability with interrelated 
nonhomogeneous items. Applied psychological measurement, 22, 375–385.

Raykov, T. (2001). Bias of Coefficient Alpha for fixed congeneric measures with correlated 
errors. Applied psychological measurement, 25, 69-76.

Raykov, T., Shrout, P.E. (2002). Reliability of Scales with General Structure: Point and Interval 
Estimation using a Structural Equation Modeling Approach. Structural Equation Modeling.
9(2): 195-212.

Sapin, C., Simeoni, M. C., El Khammar, M., Antoniotti, S. Auquier, P. (2005). Reliability and 
validity of the VSP-A, a health-related quality of life instrument for ill and healthy 
adolescents. Journal of Adolescent Health, 36, 327-336.

Spearman, C. (1910) Correlation calculated from faulty data. British journal of psychology, 3, 
271-295.

17



Vermunt, J. (1996). Log-linear models for event histories, Sage Publications, Thousand Oaks, 
CA.

Vehkalahti, K., Puntanen, S., and Tarkkonen, L. (2006). Estimation of reliability:  a Better 
alternative for Cronbach’s Alpha.  Reports on Mathematics, Preprint 430, 
Department of Mathematics and Statistics, University of Helsinki, Finland. 

Wiley, D. E. & Wiley, J.A..  (1970).  The Estimation of Measurement Error in Panel Data.  
American Sociological Review,  35, 112-117.

Yoshizumi, T., Murase, S., Murakami, T., & Takai, J. (2006).  Reliability and validity of the 
Parenting Scale of Inconsistency. Psychological reports, 99, 74-84.

Zimmerman, D. W., & Zumbo, B. D. (1993). Coefficient Alpha as an estimate of test reliability 
under violation of two assumptions. Educational & psychological measurement, 53, 33-50.

18



Table 1.  YSR Scale Score Reliability Estimates using the Simplex Model and Cronbach’s 
Alpha

MODEL WAVE 1 WAVE
2

WAVE 
3

Simplex Model

     Constant Error Variance 0.77 0.71 0.67

     Constant True Score Variance 0.57 0.71 0.81

Cronbach’s Alpha 0.96 0.95 0.95

Figure 1.  Cronbach’s Alpha Model for Four Indicators
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Figure 2.  Simplex Model for Three Repeated Scores 
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Figure 3.  Generalized Simplex Model for Three Repeated Scores 
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Table 2:  Reliability Estimates for Select NSCAW Measures

Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

CBCL (2+ years) Total Problem 
Behavior 5330 Simplex Model (SM) 0.756 (0.019) 0.732 (0.020) 0.725 (0.023)

SM Constant True Score Variance 0.666 (0.030) 0.732 (0.051) 0.753 (0.122)

589, 985, 1259 Coefficient Alpha (2-3 years)  (98 items) 0.942 (0.004) 0.945 (0.003) 0.949 (0.002)
3174, 3002, 3359 Coefficient Alpha (4+ years)  (118 items) 0.9622 0.9622 0.9622

5330 Generalized Model (GM) 0.650 (0.022) 0.612 (0.022) 0.600 (0.025)
GM Constant True Score Variance 0.718 (0.017) 0.707 (0.016) 0.709 (0.016)
GM Constant Error Variance 0.647 (0.022) 0.615 (0.022) 0.602 (0.025)
GM Uncorrelated Error 0.898 (0.004) 0.875 (0.004) 0.874 (0.003)

CBCL (2+ years) Externalizing 5330 Simplex Model (SM) 0.763 (0.021) 0.737 (0.020) 0.731 (0.023)
Constant True Score Variance 0.667 (0.028) 0.738 (0.051) 0.757 (0.111)

589, 985, 1259 Coefficient Alpha (2-3 years)  (26 items) 0.906 (0.006) 0.903 (0.005) 0.909 (0.004)
3174, 3002, 3359 Coefficient Alpha (4+ years)  (33 items) 0.928 (0.002) 0.929 (0.002) 0.928 (0.002)

5330 Generalized Model (GM) 0.768 (0.020) 0.747 (0.020) 0.739 (0.023)
GM Constant True Score Variance 0.823 (0.013) 0.827 (0.013) 0.828 (0.013)
GM Constant Error Variance 0.772 (0.020) 0.747 (0.020) 0.738 (0.022)
GM Uncorrelated Error 0.935 (0.002) 0.932 (0.003) 0.931 (0.002)

CBCL (2+ years) Internalizing 5330 Simplex Model (SM) 0.714 (0.026) 0.677 (0.029) 0.656 (0.033)
Constant True Score Variance 0.598 (0.039) 0.677 (0.069) 0.720 (0.149)

589, 985, 1259 Coefficient Alpha (2-3 years)  (25 items) 0.818 (0.013) 0.833 (0.009) 0.844 (0.007)
3174, 3002, 3359 Coefficient Alpha (4+ years)  (31 items) 0.900 (0.003) 0.900 (0.003) 0.895 (0.003)
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Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

CBCL (2+ years) Internalizing 5330 Generalized Model (GM) 0.692 (0.024) 0.667 (0.027) 0.647 (0.030)
GM Constant True Score Variance 0.739 (0.018) 0.751 (0.018) 0.759 (0.018)
GM Constant Error Variance 0.702 (0.024) 0.667 (0.027) 0.639 (0.030)
GM Uncorrelated Error 0.887 (0.004) 0.883 (0.004) 0.885 (0.004)

YSR (11+ years) Total Problem 
Behavior 1832 Simplex Model (SM) 0.768 (0.047) 0.710 (0.054) 0.669 (0.069)

Constant True Score Variance 0.569 (0.048) 0.710 (0.133) 0.812 (0.259)

1167, 1270, 1590 Coefficient Alpha  (101 items) 0.956 (0.003) 0.950 (0.002) 0.945 (0.002)

1825 Generalized Model (GM) 0.750 (0.048) 0.692 (0.053) 0.662 (0.065)
GM Constant True Score Variance 0.793 (0.037) 0.799 (0.038) 0.806 (0.038)
GM Constant Error Variance 0.755 (0.048) 0.692 (0.053) 0.655 (0.065)
GM Uncorrelated Error 0.953 (0.003) 0.946 (0.003) 0.948 (0.003)

YSR (11+ years) Externalizing 1832 Simplex Model (SM) 0.788 (0.039) 0.733 (0.047) 0.721 (0.054)
Constant True Score Variance 0.583 (0.045) 0.733 (0.118) 0.766 (0.216)

1167, 1270, 1590 Coefficient Alpha  (30 items) 0.895 (0.006) 0.876 (0.005) 0.877 (0.005)

1825 Generalized Model (GM) 0.747 (0.043) 0.691 (0.047) 0.700 (0.052)
GM Constant True Score Variance 0.751 (0.034) 0.761 (0.032) 0.775 (0.032)
GM Constant Error Variance 0.753 (0.041) 0.691 (0.047) 0.682 (0.052)
GM Uncorrelated Error 0.877 (0.009) 0.850 (0.009) 0.867 (0.008)
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Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

YSR (11+ years) Internalizing 1832 Simplex Model (SM) 0.717 (0.068) 0.668 (0.073) 0.595 (0.103)
Constant True Score Variance 0.569 (0.067) 0.668 (0.176) 0.815 (0.351)

1167, 1270, 1589 Coefficient Alpha  (31 items) 0.899 (0.006) 0.894 (0.006) 0.879 (0.006)

1825 Generalized Model (GM) 0.708 (0.067) 0.656 (0.071) 0.602 (0.093)
GM Constant True Score Variance 0.736 (0.052) 0.743 (0.052) 0.757 (0.053)
GM Constant Error Variance 0.712 (0.066) 0.656 (0.071) 0.584 (0.092)
GM Uncorrelated Error 0.900 (0.007) 0.884 (0.009) 0.879 (0.007)

TRF (5+ years) Total Problem Behavior 2631 Simplex Model (SM) 0.604 (0.074) 0.589 (0.071) 0.552 (0.089)
Constant True Score Variance 0.566 (0.073) 0.589 (0.156) 0.642 (0.258)

1325, 1394, 1610 Coefficient Alpha  (95 items) 0.966 (0.001) 0.967 (0.001) 0.967 (0.001)

2643 Generalized Model (GM) 0.599 (0.078) 0.582 (0.075) 0.546 (0.085)
GM Constant True Score Variance 0.717 (0.061) 0.720 (0.061) 0.720 (0.061)
GM Constant Error Variance 0.601 (0.078) 0.582 (0.075) 0.546 (0.086)
GM Uncorrelated Error 0.969 (0.002) 0.970 (0.002) 0.968 (0.002)

TRF (5+ years) Externalizing 2635 Simplex Model (SM) 0.656 (0.065) 0.640 (0.064) 0.602 (0.076)
Constant True Score Variance 0.612 (0.068) 0.640 (0.145) 0.707 (0.269)

1325, 1393, 1610 Coefficient Alpha  (28 items) 0.952 (0.002) 0.952 (0.002) 0.950 (0.002)

2642 Generalized Model (GM) 0.651 (0.064) 0.638 (0.063) 0.605 (0.070)
GM Constant True Score Variance 0.746 (0.047) 0.750 (0.047) 0.754 (0.047)
GM Constant Error Variance 0.655 (0.065) 0.638 (0.063) 0.601 (0.071)
GM Uncorrelated Error 0.944 (0.003) 0.946 (0.003) 0.945 (0.003)
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Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

TRF (5+ years) Internalizing 2521 Simplex Model (SM) 0.389 (0.091) 0.333 (0.090) 0.283 (0.125)
Constant True Score Variance 0.306 (0.087) 0.333 (0.152) 0.358 (0.210)

1323, 1394, 1609 Coefficient Alpha  (31 items) 0.913 (0.004) 0.910 (0.004) 0.906 (0.005)

2642 Generalized Model (GM) 0.429 (0.091) 0.368 (0.094) 0.331 (0.119)
GM Constant True Score Variance 0.515 (0.099) 0.514 (0.098) 0.527 (0.099)
GM Constant Error Variance 0.427 (0.090) 0.367 (0.093) 0.311 (0.120)
GM Uncorrelated Error 0.926 (0.005) 0.917 (0.005) 0.929 (0.005)

RAPS (11+ years) Emotional Security 1821 Simplex Model (SM) 0.643 (0.110) 0.644 (0.108) 0.608 (0.129)
Primary Caregiver Constant True Score Variance 0.645 (0.115) 0.644 (0.246) 0.708 (0.412)

1159, 1267, 1562 Coefficient Alpha  (3 items) 0.649 (0.024) 0.682 (0.021) 0.697 (0.018)

1821 Generalized Model (GM) 0.362 (0.086) 0.398 (0.094) 0.403 (0.102)
GM Constant True Score Variance 0.400 (0.058) 0.430 (0.063) 0.451 (0.067)
GM Constant Error Variance 0.400 (0.089) 0.383 (0.088) 0.355 (0.089)
GM Uncorrelated Error 0.449 (0.029) 0.493 (0.029) 0.524 (0.023)

RAPS (11+ years) Emotional Security 1134 Simplex Model (SM) 0.703 (0.130) 0.613 (0.162) 0.649 (0.162)
Secondary Caregiver Constant True Score Variance 0.472 (0.126) 0.613 (0.360) 0.556 (0.430)

579, 610, 751 Coefficient Alpha  (3 items) 0.776 (0.026) 0.769 (0.024) 0.785 (0.023)

1134 Generalized Model (GM) 0.420 (0.130) 0.362 (0.136) 0.399 (0.141)
GM Constant True Score Variance 0.433 (0.106) 0.483 (0.110) 0.483 (0.111)
GM Constant Error Variance 0.465 (0.122) 0.348 (0.128) 0.384 (0.132)
GM Uncorrelated Error 0.622 (0.036) 0.624 (0.034) 0.660 (0.028)
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Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

RAPS (11+ years) Involvement 1821 Simplex Model (SM) 0.490 (0.069) 0.486 (0.073) 0.466 (0.083)
Primary Caregiver Constant True Score Variance 0.483 (0.085) 0.486 (0.137) 0.505 (0.216)

1155, 1266, 1561 Coefficient Alpha  (4 items) 0.624 (0.021) 0.607 (0.020) 0.573 (0.019)

RAPS (11+ years) Involvement 1821 Generalized Model (GM) 0.190 (0.046) 0.185 (0.047) 0.172 (0.045)
Primary Caregiver GM Constant True Score Variance 0.215 (0.035) 0.214 (0.035) 0.213 (0.035)

GM Constant Error Variance 0.188 (0.045) 0.185 (0.047) 0.173 (0.045)
GM Uncorrelated Error 0.282 (0.018) 0.273 (0.018) 0.253 (0.013)

RAPS (11+ years) Involvement 1133 Simplex Model (SM) 0.607 (0.135) 0.602 (0.133) 0.600 (0.148)
Secondary Caregiver Constant True Score Variance 0.593 (0.139) 0.602 (0.294) 0.603 (0.406)

580, 610, 750 Coefficient Alpha  (4 items) 0.672 (0.027) 0.701 (0.026) 0.682 (0.021)

1133 Generalized Model (GM) 0.259 (0.105) 0.262 (0.105) 0.257 (0.109)
GM Constant True Score Variance 0.293 (0.066) 0.304 (0.069) 0.301 (0.070)
GM Constant Error Variance 0.273 (0.111) 0.262 (0.105) 0.262 (0.108)
GM Uncorrelated Error 0.360 (0.027) 0.373 (0.029) 0.353 (0.021)

RAPS (11+ years) Autonomy Support 1817 Simplex Model (SM) 0.433 (0.081) 0.392 (0.083) 0.397 (0.096)
Primary Caregiver Constant True Score Variance 0.366 (0.080) 0.392 (0.146) 0.389 (0.190)

1148, 1261, 1558 Coefficient Alpha  (2 items) 0.357 (0.036) 0.354 (0.039) 0.333 (0.040)

1817 Generalized Model (GM) 0.409 (0.094) 0.411 (0.085) 0.391 (0.106)
GM Constant True Score Variance 0.378 (0.068) 0.399 (0.067) 0.396 (0.070)
GM Constant Error Variance 0.452 (0.082) 0.410 (0.085) 0.406 (0.089)
GM Uncorrelated Error 0.357 (0.036) 0.363 (0.033) 0.335 (0.040)
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Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

RAPS (11+ years) Autonomy Support 1130 Simplex Model (SM) 0.411 (0.104) 0.320 (0.106) 0.344 (0.127)
Secondary Caregiver Constant True Score Variance 0.277 (0.092) 0.320 (0.175) 0.309 (0.201)

577, 610, 749 Coefficient Alpha  (2 items) 0.358 (0.052) 0.320 (0.067) 0.283 (0.058)

1130 Generalized Model (GM) 0.342 (0.115) 0.298 (0.099) 0.264 (0.124)
GM Constant True Score Variance 0.280 (0.081) 0.304 (0.087) 0.291 (0.084)
GM Constant Error Variance 0.391 (0.098) 0.298 (0.099) 0.319 (0.109)
GM Uncorrelated Error 0.358 (0.052) 0.315 (0.063) 0.283 (0.058)

RAPS (11+ years) Structure 1817 Simplex Model (SM) 0.513 (0.083) 0.499 (0.088) 0.482 (0.105)
Primary Caregiver Constant True Score Variance 0.484 (0.095) 0.498 (0.172) 0.515 (0.236)

1148, 1258, 1556 Coefficient Alpha  (3 items) 0.524 (0.030) 0.555 (0.027) 0.547 (0.020)

1817 Generalized Model (GM) 0.247 (0.060) 0.261 (0.057) 0.250 (0.066)
GM Constant True Score Variance 0.267 (0.044) 0.286 (0.044) 0.292 (0.047)
GM Constant Error Variance 0.285 (0.058) 0.262 (0.057) 0.242 (0.061)
GM Uncorrelated Error 0.308 (0.027) 0.340 (0.025) 0.333 (0.019)

RAPS (11+ years) Structure 1131 Simplex Model (SM) 0.703 (0.211) 0.663 (0.243) 0.669 (0.255)
Secondary Caregiver Constant True Score Variance 0.584 (0.225) 0.663 (0.559) 0.651 (0.767)

579, 610, 749 Coefficient Alpha  (3 items) 0.579 (0.032) 0.592 (0.035) 0.622 (0.027)

1131 Generalized Model (GM) 0.323 (0.123) 0.322 (0.134) 0.350 (0.139)
GM Constant True Score Variance 0.326 (0.090) 0.355 (0.096) 0.370 (0.099)
GM Constant Error Variance 0.371 (0.129) 0.323 (0.133) 0.322 (0.134)
GM Uncorrelated Error 0.377 (0.032) 0.387 (0.034) 0.412 (0.030)
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Measure N (by wave for alpha) Model Reliability (standard errors)
Wave 1 Wave 3 Wave 4

SF-12 Mental Health of Caregiver 5484 Simplex Model (SM) 0.532 (0.029) 0.501 (0.030) 0.496 (0.035)
Constant True Score Variance 0.470 (0.033) 0.501 (0.058) 0.506 (0.098)

5387, 4652, 4615 Coefficient Alpha  (12 items) 0.621 (0.006) 0.616 (0.008) 0.614 (0.008)

5491 Generalized Model (GM) 0.420 (0.030) 0.397 (0.028) 0.389 (0.033)
GM Constant True Score Variance 0.454 (0.026) 0.471 (0.026) 0.469 (0.027)
GM Constant Error Variance 0.438 (0.029) 0.395 (0.028) 0.390 (0.032)
GM Uncorrelated Error 0.696 (0.009) 0.691 (0.011) 0.692 (0.011)

SF-12 Physical Health of Caregiver 5484 Simplex Model (SM) 0.578 (0.028) 0.587 (0.026) 0.616 (0.027)
Constant True Score Variance 0.600 (0.029) 0.587 (0.056) 0.546 (0.073)

5387, 4652, 4615 Coefficient Alpha  (12 items) 0.676 (0.006) 0.689 (0.006) 0.696 (0.006)

5491 Generalized Model (GM) 0.241 (0.030) 0.268 (0.022) 0.282 (0.027)
GM Constant True Score Variance 0.289 (0.021) 0.294 (0.021) 0.283 (0.020)
GM Constant Error Variance 0.249 (0.029) 0.265 (0.022) 0.294 (0.027)
GM Uncorrelated Error 0.413 (0.015) 0.411 (0.017) 0.441 (0.015)

2  Models run in SAS proc mixed.  No standard error estimates available.
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Table 3:  Nested Wald Tests for the SSM’s in Table 2*

Measure N Uncorrelated Errors Constant Error Variance Constant True Score Variance
Chi-square DF p-value Chi-square DF p-value Chi-square DF p-value

CBCL (2+ years) Total Problem 
Behavior 5330 122.786 1 0.000 7.613 2 0.0222 16.692 2 0.0002

CBCL (2+ years) Externalizing 5330 78.244 1 0.000 3.650 2 0.1612 18.660 2 0.0001

CBCL (2+ years) Internalizing 5330 65.005      1  0.000 28.805      2  0.0000 15.411      2  0.0005

YSR (11+ years) Total Problem 
Behavior 1825 21.031 1 0.000 18.360 2 0.0001 23.782      2  0.000

YSR (11+ years) Externalizing 1825 10.681      1  0.0011 10.629       2 0.0049 18.613      2  0.0001

YSR (11+ years) Internalizing 1825 9.583     1 0.0020 7.307     2 0.0259 25.084      2  0.000

TRF (5+ years) Total Problem Behavior 2643 25.338       1 0.000 2.135      2 0.3438 4.688     2 0.0959

TRF (5+ years) Externalizing 2642 24.243       1 0.000 6.415    2  0.0405 6.042    2  0.0488

TRF (5+ years) Internalizing 2642 31.154        1 0.000 15.481       2 0.0004 5.494     2 0.0641

RAPS (11+ years) Emotional Security 1821 184.206       3 0.000 10.974        2 0.0041 0.295 2    0.8630

Primary Caregiver

RAPS (11+ years) Emotional Security 1134 89.607       3 0.000 6.249 2    0.0440 5.404      2 0.0671

Secondary Caregiver

RAPS (11+ years) Involvement 1821 275.030       6 0.000 0.167      2 0.9197 0.884    2  0.6427

Primary Caregiver

RAPS (11+ years) Involvement 1133 134.822       6 0.000 1.146      2 0.5639 0.074    2  0.9637

Secondary Caregiver
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RAPS (11+ years) Autonomy Support 1817 0.362    1  0.5472 1.674  2   0.4329 0.817    2  0.6647

Primary Caregiver

RAPS (11+ years) Autonomy Support 1130 0.030  1    0.8628 1.292  2    0.5242 1.317  2   0.5176

Secondary Caregiver

RAPS (11+ years) Structure 1817 102.924     3  0.000 7.048    2  0.0295 0.717  2    0.6988

Primary Caregiver

RAPS (11+ years) Structure 1131 64.253     3   0.000 6.559  2   0.0377 0.593  2    0.7436

Secondary Caregiver

SF-12 Mental Health of Caregiver 5491 103.969     1  0.000 8.019    2  0.0181 7.788    2  0.0204

SF-12 Physical Health of Caregiver 5491 45.927       1 0.000 4.008  2   0.1348 5.333    2  0.0695

* Note:  Constraints that could not be rejected are highlighted in bold: 2 uncorrelated errors, 7 constant error variance, and 10 constant
true score variance

30


