Appendix H

Calculation of Minimum Detectable Effects for DistrictLevel Proportions Using the IDEA National Implementation Study (IDEA NAIS) District Sample

Let P represent the population proportion of some characteristic of interest associated with school districts. We want to estimate P. Assume that we select a simple random sample of n school districts. Let the sample proportion based on n districts be p. The standard error (standard deviation) of p is given by

$$
\text { s.e. }(p)=\sqrt{\frac{(N-n)}{N-1} \frac{p(1-p)}{n}} \quad \text { where }
$$

N is the population size of school districts.

Assuming that the sample proportion P has a normal distribution with P as the mean and s.e. (P) as the standard deviation, a 95% confidence interval for P is given by

$$
p \pm 1.96 \text { s.e.(} p) .
$$

Since we do not have a simple random sample, we assume a design effect of 1.6. This is the ratio of the variance of p under the sampling design used for the survey to the variance under simple random sampling. The effective sample size is

$$
n^{*}=\frac{n}{1.6} .
$$

If we have a sample of 1,200 school districts and we have a response rate of 80%, then we have 960 schools in the sample. The effective sample size is

$$
n^{*}=\frac{960}{1.6}=600 .
$$

Let $p=0.5$

The variance of p is $=\frac{13988-600}{13988-1} \frac{0.5(1-.5)}{600}$

$$
=(0.95718) 0.25 / 600=0.000399 .
$$

Therefore s.e. $(P)=0.019975$, assuming that the population of school districts is 13,988 .
95% confidence interval for P is $0.50 \pm 1.96 \times 0.019975$ which is 0.50 ± 0.0391.

In percentages, a 95\% confidence interval for the population percentage P in this case is 50 ± 3.9 percentage points.

