
 instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.


 (voice and TDD).
 an equal opportunity provider and employer.

## U.S. DEPARTMENT OF AGRICULTURE AGRICULTURAL MARKETING SERVICE

Exhibit C SCIENCE AND TECHNOLOGY PLANT VARIETY PROTECTION OFFICE BELTSVILLE, MD 20705

OBJECTIVE DESCRIPTION OF VARIETY
Pumpkin/Squash/Gourd (Cucurbita pepo L.)

| NAME OF APPLICANT (S) | TEMPORARY OR EXPERIMENTAL DESIGNATION | VARIETY NAME |
| :---: | :---: | :---: |
| ADDRESS (Street and No. or RD No., City, State, Zip Code and Country) |  | FOR OFFICIAL USE ONLY |
|  |  | PVPO NUMBER |

## PLEASE READ ALL INSTRUCTIONS CAREFULLY:

In the spaces on the left, enter the appropriate numbers that describe the characteristics of the application variety. On the right, enter the appropriate numbers that describe the characteristics of the most similar comparison variety. Right justify whole numbers by adding leading zeros if necessary. The variety that you choose for comparison should be the most similar one in terms of overall morphology, background and maturity. Please follow the guidelines on page 1 for conducting the trials. The comparison variety should be grown in field trials with the application variety for two independent growing cycles, at one or more localities, in the region and season of best adaptability. In general, measurements of quantitative traits should be taken on at least 24 randomly selected plants or plant parts to obtain averages and statistics that describe a typical field of the variety. (Form technical content last updated March 2007.)

General Descriptors:
_ 01. Fruit Shape/ Variety Group (Figure 1; also see instruction 5b above):
1 = Acorn 2 = Cocozelle 3 = Crookneck
$4=$ Pumpkin $\quad 5=$ Scallop $\quad 6=$ Straightneck
7 = Vegetable marrow $8=$ Zucchini
$9=$ None of the above, specify shape:
(e.g. pyriform, bottle, hourglass, fusiform, etc.)
$10=$ Gourd, specify shape:
(e.g. spherical, oblate, egg, pear, spoon, crown-of-thorns, star, winged, etc.)
02. Expected primary usage:

1 = Culinary 2 = Ornamental 3 = Both
03. What parts of the plant provide expected primary usage (above):
$1=$ Mature fruit $2=$ Immature fruit $3=$ Flowers
$4=$ Vegetation $5=$ Seeds
04. Cotyledons measured between full expansion of first and second true leaves:
_ - _ 04a. Length to width ratio (example: 0.00)
---
-
Application Variety
02. Expected primary usage:

| 1 $=$ Culinary | $2=$ Ornamental |
| :--- | :--- |$\quad 3$ = Both

Comparison Variety Name

1. Fruit Shape/ Variety Group

| - | 03. What parts of the plant provide expected primary usage (above): <br> 1= Mature fruit $2=$ Immature fruit 3 = Flowers <br> $4=$ Vegetation $5=$ Seeds |  |  | - 03. Part of plant for \#02 above |
| :---: | :---: | :---: | :---: | :---: |
|  | 04. Cotyledons measured between full expansion of first and second true leaves:$\qquad$$\qquad$ 04a. Length to width ratio (example: 0.00) |  |  | 04. Cotyledons: <br> ```04a. Length to Width ratio``` $\qquad$ <br> ```04b. Apex``` $\qquad$ <br> ```04c. Veining``` |
| Application Variety |  |  |  | Comparison Variety |



| Application Variety | Comparison Variety |
| :---: | :---: |
| Laminae: <br> 12. Lobing of $10^{\text {th }}$ and $15^{\text {th }}$ laminae on main stem (Figure 2): <br> $0=$ Not lobed $1=$ Shallowly lobed <br> $2=$ Medium lobed <br> 3 = Deeply lobed $4=$ Very deeply lobed <br> 13. Dimensions of leaf laminae after the $20^{\text {th }}$ internode has developed (length measured from the point of petiole attachment to the apex of the lamina; maximal width measured at 90 -degree angle to the length of the lamina): $\qquad$ 13a. Length to maximal width ratio of $10^{\text {th }}$ true leaf (example: 0.00 ) $\qquad$ 13b. Length to maximal width ratio of $15^{\text {th }}$ true leaf (example: 0.00 ) <br> 14. Silver blotching or mottling (genetic, not leaf-silvering disorder) of adaxial surface of laminae after the $20^{\text {th }}$ internode has developed: <br> 1 = Silver blotching completely absent over time (Costata Romanesca, Early Prolific Straightneck) <br> 2 = Silver blotching present early in development, then disappearing <br> 3 = Silver blotching over a small amount of the surface <br> 4 = Silver blotching over a moderate amount of the surface <br> 5 = Silver blotching over much of the surface (Caserta) | Laminae: <br> 12. Lobing <br> 13. Leaf laminae dimensions: $\qquad$ 13a. L:W ratio of $10^{\text {th }}$ true leaf $\qquad$ 13b. L:W ratio of $15^{\text {th }}$ true leaf $\qquad$ 14. Silver blotching |
| Flowers: <br> 15. Number of flowers per node: <br> 1 = Averaging clearly less than one <br> 2 = One (almost always) (Fordhook Zucchini, Cocozelle) <br> 3 = Often more than one <br> 4 = Consistently more than one (Yellow Summer Crookneck) <br> 16. Staminate flower on day of anthesis on main stem between nodes 11 and 20 (Figure 3): $\qquad$ mm 16a. Length from base of calyx to tip of corolla $\qquad$ mm 16b. Exterior width at top of calyx cup $\qquad$ mm 16c. Pedicel length $\qquad$ mm 16d. Length of anther column <br> 17. Dominant color of corolla of staminate flower, on day of anthesis: <br> 1 = Orange-yellow <br> 2 = Light yellow <br> 3 = Nearly white <br> 18. Ring at base of interior of staminate corolla: <br> 1 = Absent <br> 2 = Yellow <br> 3 = Green and yellow <br> $4=$ Light green $5=$ Dark green <br> 19. Ring at base of interior of pistillate corolla: <br> 1 = Absent 2 = Yellow 3 = Green and yellow <br> 4 = Light green $5=$ Dark green <br> 20. Pistillate flower on day of anthesis: $\qquad$ mm 20a. Length from base of calyx to tip of corolla $\qquad$ mm 20b. Pedicel length <br> 21. Ovary color on day prior to anthesis: <br> 1 = Green (Black Beauty, Fordhook Zucchini, Cocozelle, Clarita) <br> $2=$ Green turning yellow (Yellow Summer Crookneck) <br> 3 = Yellow (Goldy, Gold Rush, Multipik) <br> 4 = Bicolor green and yellow (Zephyr, Flying Saucer) | Flowers: <br> 15. Number of flowers per node <br> 16. Staminate flower measurements: $\qquad$ mm 16a. Length of petal $\qquad$ mm 16b. Width of petal $\qquad$ mm 16c. Pedicel length $\qquad$ mm 16 d . Length of anther column $\qquad$ 17. Dominant staminate flower color $\qquad$ 18. Ring at base of staminate corolla <br> 20. Pistillate flower measurements: $\qquad$ mm 20 a . Length of petal $\qquad$ mm 20b. Pedicel length $\qquad$ 21. Ovary color |
| Application Variety | Comparison Variety |


| Application Variety | Comparison Variety |
| :---: | :---: |
| Immature Fruit: <br> 22. Immature fruit size (3-5 days past anthesis) (Figure 4): $\qquad$ 22a. Length (through the axis) to medial width ratio (example: 0.00) $\qquad$ 22b. Length (through the axis) to maximal width ratio (example: 0.00) <br> 23. Immature fruit color (3-5 days past anthesis): <br> 23a. Main color: <br> 1 = Intense green (Fordhook Zucchini, Black Beauty, Jack O'Lantern, Senator, Spineless Beauty, Raven) <br> $2=$ Light green (Arlika, Clarita, Small Sugar, Ronde de Nice) <br> 3 = Intense yellow (Goldy, Gold Rush, Golden Rod) <br> 4 = Light yellow (Early Prolific Straightneck, Yellow Summer Crookneck, Multipik, Dixie, Gentry) <br> 5 = Intense bicolor (Sunburst, Nova) <br> $6=$ Light bicolor <br> 7 = Striped green (Cocozelle, Costata Romanesca, Caserta) <br> 8 = Striped yellow <br> $9=$ Striped bicolor, or quadricolor (Zephyr, Flying Saucer) <br> 23b. If striped, the darker stripes are: <br> 1 = Broad and contiguous (Cocozelle, Costata Romanesca) <br> 2 = Narrow and not contiguous (Caserta, Verte d'Italie) <br> 24. Immature fruit flecks: <br> 1 = Small (Nero di Milano, Raven, Magic Lantern) <br> $2=$ Medium (Fordhook Zucchini, Nano Verde di Milano) <br> 3 = Large (Ortolano di Faenza, Striato Pugliese, Costata Romanesca, <br> Grey Zucchini OP, Clarita, Spineless Beauty, Howden, Ronde de Nice) <br> 25. Immature fruit warting: <br> 1 = Absent (Cocozelle, Fordhook Zucchini, Ronde de Nice, Gentry) <br> 2 = Present (Early Prolific Straightneck, Yellow Summer Crookneck, Early Summer Crookneck) | Immature Fruit: <br> 22. Immature fruit size $\qquad$ 22a. L:W ratio (to medial width) $\qquad$ 22b. L:W ratio (to maximal width) <br> 23. Immature fruit color <br> 23a. Main color <br> 23b. Description of darker stripes <br> 24. Immature fruit flecks |
| Mature Fruit: <br> 26. Mature fruit surface topography (fill in the blank with the most appropriate choice) (Figure 5): <br> Ribbing present (swelling above vascular tracts): <br> 1 = Prominent and along entire length (Costata Romanesca) <br> 2 = Slight, more prominent near peduncle (Fordhook Zucchini) <br> 3 = Slight, near peduncle (Grey Zucchini OP, Small Green Algerian) <br> Furrowing (angularly depressed above vascular tracts) and/or ridging (angularly raised between vascular tracts) <br> 4 = Prominent, along nearly entire length (Taybelle, Mammoth Table Queen) <br> 5 = Moderate (Sweet Dumpling) <br> Scalloping (roundly lobed between vascular tracts): <br> $6=$ Prominent, at equatorial region (Benning's Green Tint) <br> 7 = Not so prominent, at equatorial region (Scallopini) <br> $8=$ Prominent, at peduncular region (Sunny Delight) <br> $9=$ Not so prominent, at peduncular region <br> $10=$ Prominent, at stylar region (Sunburst) <br> 11= Not so prominent, at stylar region <br> Lobing (broadly and roundly protruding between the vascular tracts and shallowly depressed along the vascular tracts, along nearly the entire length of the fruit) <br> $12=$ Prominent (Jack-Be-Little) <br> $13=$ Not so prominent <br> Grooving (very narrow, shallow depressions along vascular tracts and midway in-between) <br> 14 = Distinct (Howden) <br> $15=$ Not so distinct (Winter Luxury) <br> Wrinkling (irregular surface) <br> $16=$ Distinct <br> $17=$ Indistinct <br> 18 = Completely smooth | Mature Fruit: $\qquad$ 26. Mature fruit topography |
| Application Variety | Comparison Variety |


| Application Variety | Comparison Variety |
| :---: | :---: |
| Mature Fruit (continued): <br> 27. Mature fruit dimensions (at least 40 days past anthesis) (Figure 4): $\qquad$ 27a. Length (through the axis) to medial width ratio (Example: 0.00) $\qquad$ 27b. Length (through the axis) to maximal width ratio (Example: 0.00) <br> 28. Mature fruit warting: <br> 1 = Absent (Cocozelle, Fordhook Zucchini, Ronde de Nice) <br> 2 = Sparse, small (Gentry) 3 = Sparse, large (White Bush Scallop) <br> 4 = Many, small 5 = Many, large (Orange Warted, Yellow Summer Crookneck) <br> 29. Mature fruit rind: <br> 1 = Lignified (when cutting mature fruit, little cracks form) <br> 2 = Not lignified (when cutting mature fruit, they slice smoothly and easily) <br> 30. Mature fruit stylar scar: <br> 1 = Protruding $2 \text { = Flat }$ <br> 3 = Depressed <br> 31. Mature fruit stylar end: <br> 1 = Depressed (Howden) 2 = Nearly Flat (Fordhook Zucchini, True French) <br> 3 = Convex (Yellow Summer Crookneck) <br> 32. Mature fruit peduncle end: <br> 1 = Depressed <br> 2 = Nearly flat <br> 3 = Convex <br> 33. Mature fruit peduncle (Figure 6): $\qquad$ 33a. Length (through the axis) to medial width ratio (Example: 0.00) $\qquad$ 33b. Length (through the axis) to maximal width (near fruit attachment) ratio (Example: 0.00) <br> 34. Mature fruit surface: <br> 1 = Netted (Winter Luxury) $2 \text { = Cracked (Golden Zucchini) }$ <br> 35. Mature fruit exterior color: <br> - 35a. Main color: <br> 1 = Light green <br> 2 = Dark green (Table Queen) <br> 3 = Black green (Fordhook Zucchini, Taybelle) <br> 4 = Grey green <br> 5 = Grey <br> $6=$ Light orange <br> 7 = Pale orange <br> 8 = Medium orange (Winter Luxury, Grey Zucchini OP) <br> 9 = Intense orange (Jack O'Lantern, Howden) <br> 10 = Yellow orange <br> 11 = Light yellow orange <br> 12 = Light yellow (Vegetable Spaghetti) <br> 13 = Intense yellow (Early Prolific Straightneck) <br> 14 = Nearly white (White Bush Scallop) <br> Complex colors (give combination of choice above with color covering most of the fruit surface first) $\qquad$ 35b. Striped (Cocozelle 1, 8; Delicata 11, 2) $\qquad$ $\qquad$ 35c. Bicolor (Sunburst 10, 1) $\qquad$ $\qquad$ $\qquad$ $\qquad$ 35d. Quadricolor (Carnival 2, 4, 6, 11) <br> 36. Mature fruit mesocarp (flesh) color: $\begin{aligned} & 1=\text { Intense Orange (Winter Luxury) } \\ & 2=\text { Light Orange (Connecticut Field, Fordhook Zucchini) } \\ & 3=\text { Intense Yellow (Mongogo) } \\ & 4=\text { Light Yellow (Early Prolific Straightneck) } \\ & 5=\text { White (White Bush Scallop) } \\ & 6=\text { White tinged green } \end{aligned}$ <br> 37. Mature fruit endocarp (placenta) color: | Mature Fruit (continued): <br> 27. Mature fruit dimensions: $\qquad$ 27a L:W ratio (to medial width) $\qquad$ 27b. L:W ratio (to maximal width) $\qquad$ 28. Mature fruit warting $\qquad$ 29. Mature fruit rind lignified $\qquad$ 30. Mature fruit stylar scar <br> 31. Mature fruit stylar end <br> 33. Mature fruit peduncle dimensions: $\qquad$ $\qquad$ 33a. L:W ratio (to medial width) $\qquad$ 33b. L:W ratio (to maximal width) <br> 34. Mature fruit surface $\qquad$ $\qquad$ 35b. Striped pattern $\qquad$ $\qquad$ 35c. Bicolor pattern $\qquad$ $\qquad$ $\qquad$ $\qquad$ 35d. Quadricolor pattern $\qquad$ 36. Mature fruit flesh color $\qquad$ 37. Mature fruit placenta color |
| $\overline{1=}$ Orange $\quad 2=$ Yellow $3=$ White <br> Application Variety  | Comparison Variety |


43. On additional pages, attach photographs of mature fruits of both the application variety and the comparison variety, showing external and internal coloring, with a ruler in the photograph to indicate scale.

Additional photographs of the plant, flowers, immature fruits, or other plant parts could also be helpful in providing a full description of the variety to readers. Please provide such photographs if you believe they would be helpful.

## References:

Goldman, A. 2004. The compleat squash. Artisan, New York
Missouri Botanical Garden. 2007. Plant Science. Tropical Botanical Science Database. http://mobot.mobot.org/W3T/Search/vast.html
Paris, H.S. 1986. A proposed subspecific classification for Cucurbita pepo. Phytologia 60: 133-138.
Paris, H.S. 1989. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 43: 423-443.
Paris, H.S. 1996. Summer squash: history, diversity and distribution. HortTechnology 6: 6-13.
Paris, H.S. 2000. History of the cultivar-groups of Cucurbita pepo. Hort. Rev. 25(2001): 71-170, 4 pl.
Paris, H.S. 2001. Characterization of the Cucurbita pepo collection at the Newe Ya'ar Research Center, Israel. Plant Genet. Resources Newsl. 126: Cover, 41-45.
Paris, H.S. and R.N. Brown. 2005. The genes of pumpkin and squash. HortScience 40: 1620-1630.
Paris, H.S. and H. Nerson. 2003. Seed dimensions in the subspecies and cultivar-groups of Cucurbita pepo. Genet. Resources Crop Evol. 50: 615-625.
U.S.D.A. 1969. Growing pumpkins and squashes. Farmers' Bull. No. 2086, Agricultural Research Service, Washington, DC.

Figure 1. Fruit shapes


Figure 2. Leaf lobing

absent or very shallow


3
deep

shallow


4
very deep

Figure 3. Flower measurements


Figure 4. Fruit measurements


Figure 5. Fruit cross-sections


Figure 6. Peduncle measurements


## INSTRUCTIONS FOR OBJECTIVE DESCRIPTION OF VARIETY Pumpkin, Squash, Gourd (Cucurbita pepo L.)

## 1. Subject \& Purpose of these Guidelines

These Guidelines for testing apply to all varieties of pumpkins, squash, and gourds for those belonging to the species Cucurbita pepo L. Their purpose is to tabulate many characteristics in order to establish the distinguishing phenotypic features of various cultivars of this species.

## 2. Material Required

a. The applicant, upon receiving a PVP application number and seed-depository letter from the PVP Examiner, will deposit 3000 (three thousand) seeds at the institution indicated on the depository form.
b. The seed sample should meet normal commercial requirements for germination, which should be stated by the applicant.
c. The sample must not have undergone any treatment unless the competent authorities allow or request such treatment. If the seed sample has been treated, full details of the treatment must be given.

## 3. Conduct of Testing

a. The minimum duration of the test of the variety shall be two independent growing cycles and the test may be done at one or more localities.
b. The test should be conducted under conditions ensuring satisfactory growth of the plants and normal expression of the characteristics of the variety under examination.
c. The size of the plots must be large enough to allow the plants to realize their potential. The plots also must be large enough to allow removal of plants or parts of plants for measurement or counting, if necessary, without jeopardizing later observations, such as those to be made at the end of the growing cycle. Each characteristic for testing should be based on a total of at least 24 plants ( 12 per growing cycle). Separate plots for observations and for measurements can be used but only if they have been subjected to similar growing and environmental conditions.
d. Testing for special purposes (disease resistance, vitamin content, etc.) may be established.

## 4. Methods and Observations

a. All observations determined by measurement or counting should be made on at least 12 plants or parts taken from each of 12 plants.
b. For the assessment of uniformity, a population standard of $3 \%$ should be applied. Where the test is conducted on 24 plants, the maximum number of off-types allowed would be 2.

## 5. Grouping of Varieties

The applicant should correctly classify the variety to species together with citation of the botanical authority (for example: Cucurbita pepo L.). The applicant should suggest, upon submitting the variety for testing, the market type to which the variety belongs and suggest control varieties of the same species and type.

