1205-0431 Supporting Statement, Part B:
Collection of Information Employing Statistical Methods
B-1. Description of universe and selection methods used.

The Unemployment Insurance Data Validation (Ul DV) system assesses whether the aggregate counts
that are reported to the Department are valid by independently reconstructing the counts and comparing
the reported counts with the reconstructed counts. The reconstructed counts are obtained from a file of
individual transactions, in which each record contains all the variables needed to classify the transaction
into the report cell or cells being validated. These records are built according to exacting specifications
from the underlying State database from which the reports were initially prepared, and tested to ensure
that all data elements conform to Federal reporting instructions. When the file passes the various tests,
the counts from the file constitute the standard for correct reporting. If the reported counts are within
the specified tolerances of these “validation counts” they are considered valid. The “report validation”
performed using a tested extract file tests both whether the State prepared its reports from the correct
sources and whether its item-counting software works properly.

The report validation process depends critically on having an accurate file. It is tested in two steps. In
Step 1, the validator examines and resolves all records rejected by the software as errors, removing
uncountable transactions (e.g., duplicates) and fixing and reinserting into the extract file countable
records by correcting syntax errors and other errors that caused the software to reject them. When that
step is completed and the file is assumed to contain only countable records, in Step 2 the validator
checks to see whether the records are built from data that conform to Federal reporting definitions. This
is done by drawing samples from certain classes of transactions and checking key data elements in the
sampled records against original UI program documentation using a master map that relates state data
used for DV records to Federal definitions. If this review shows that more than 5% of the underlying
records in the extract file are built from data that do not meet Federal definitions, the file is not an
accurate standard for judging reported counts and it must be rebuilt, often after steps have been taken to
correct the underlying data in the state’s database. Validation cannot move on to the report validation
phase and fails at that point. Failure at this point implies that both reported counts and reconstructed
counts will be based on an unknown proportion of individual transactions which do not conform to
Federal reporting definitions; thus both sets of counts could be wrong, and so no conclusion about
validity can be drawn from a comparison of counts.

UI DV relies on existing records from State UI databases and management information systems. As a
result, traditional response rate issues do not arise in Ul DV. However, states may not complete Ul DV
or submit reports timely for any of several reasons. See B-3, below.

Because UI DV’s scope is very extensive, different sample designs are used for efficiency, to reduce the
need for large samples required to estimate a specific proportion of incorrect transactions in the
population. The sample types and their logic are as follows. Table B-1 gives the range of samples
drawn for Benefits validation. Tax validation relies on an elaborate series of logic tests in building the
extract file, supplemented by sorts and two-case samples to ensure that the extract file is built properly.
For both benefits and tax, all logic tests, sorts and samples for an extract file must be passed before the
reconstructed count can be considered the valid standard for judging reported counts and thus that the
reported counts can pass validation.
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Random Samples. In Benefits validation, the State draws 17 random samples for the most
important types of reports data, e.g., those used to determine administrative funding or build key
performance measures. Although random samples of 100 or 200 elements are drawn, only 30 or
60 elements are evaluated initially as acceptance samples; only if the result of the initial
acceptance sample is inconclusive is the entire sample evaluated to estimate the underlying error
rate. For benefits extract files to pass—i.e., be considered reliable--all random samples must
pass; passing supplemental samples is not a criterion for reliability.

Supplemental Samples for Missing Subpopulations. These are samples of one transaction
from any subpopulations not represented in the random samples of the broader populations
which conceptually include them. These are reviewed simply to check that validation files are
programmed properly by determining that the only reason the examined sample did not include a
representative from the missing subpopulation is sampling variability—probability that the
relatively small random samples may not include rare combinations of elements in the
population

Supplemental Samples to Examine Data Outliers. The random and supplemental samples
ensure that the population as a whole was defined properly but probably do not assess whether
time-lapse measures or dollar transactions contain extreme values. UI DV addresses this issue
by sorting those populations and examining the five highest and five lowest values in each sorted
population to ensure that there are no calculation and data errors. Although DV refers to these as
“samples” they are technically the selection of specific elements.

Supplemental Minimum Samples. UI DV draws no random samples for some transactions
considered of lower priority. UI DV simply ensures that the reporting software uses the correct
field in the database to process and report the transactions. This is done by randomly selecting
two cases per subpopulation. All tax samples are two cases per subpopulation and for a tax
extract file to be considered reliable all sample cases from it must pass.

TABLE B-1
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Benefits Samples by Population, Type, and Size

Benefits Population Sample Name Universe Sample Type Size
(subpops)
Number Type of Transaction How Selected Total
Intrastate Weeks Claimed 1.1-1.3 Random 60/200 60/200
1 Weeks Claimed Interstate Liable Weeks Claimed 14-1.6 Random 30/100 30/100
Inter Weeks Claimed filed fr Agent 1.7-1.9 Minimum 2 per subpop 6
2 Final Payments Final Payments 2.1-2.4 Random 30/100 30/100
New Intra & Inter Liable Claims 3.1-3.18 Random 60/200 60/200
New Intra & Inter Liable Claims 3.1-3.18 Missing 1 per subpop <17
Subpops
Interstate Filed from Agent 3.19-3.21 Minimum 2 per subpop 6
Interstate Taken as Agent 3.22-3.24 | Minimum 2 per subpop 6
3 Claims
Intra and Inter Transitional Claims 3.25-3.33 Random 30/100 30/100
CWC Claims 3.34-3.39 Random 30/100 30/100
CWC Claims 3.34-3.39 Missing 1 per subpop <5
Subpops
Monetary Sent w/o New Claim 3.40 3.45 Minimum 2 per subpop 12
Entering Self Employment Pgm 3.46 Minimum 2 2
. A Intrastate Additional Claims 3a.1-3a.3 Random 30/100 30/100
3a Additional Claims Interstate Liable Additional Claims 3a.4-3a.6 Minimum 2 per subpop 6
First Payments 4.1-4.16 Random 60/200
First Payments 4.1-4.16 Missing 1 per subpop <15
Subpops
First Payments: Intrastate Outliers 4.1, 4.3, Outliers (TL) 5 highest, 5 10
4.5,4.7, lowest
4.9,4.11,
4.13, 4.15
Continued Weeks total Payments 4.17-4.24 Outliers (TL) 5 highest, 5 10
lowest
4 Payments Continued Weeks Partial Payments | 4.24-4.32 Random 30/100 30/100
Adjusted Payments 4.33-4.42 Outliers ($) 5 highest, 5 10
lowest
Self-Employment Payments 4.43 Minimum 2 2
CWC First Payments 4.44-4.45 Random 30/100 30/100
CWC Continued Payments 4.46-4.47 Minimum 2 per subpop 4
CWC Adjusted Payments 4.48-4.49 Minimum 2 per subpop 4
CWC Prior Weeks Compensated 4.50-4.51 Minimum 2 per subpop 4
Single Claimant Nonmon Dets 5.1-5.60 Random 30/100 30/100
Single Claimant Nonmon Dets Missing 1 per subpop <59
5.1-5.60 Subpops
5 Nonmonetary Single Claimant Nonmon Dets 5.1-5.60 Outliers (TL) 5 highest, 5 10
Determinations lowest
Ul Multi-Claimant Determinations 5.61-5.64 Minimum 2 per subpop 8
Single Claimant Redeterminations 5.65-5.70 Random 30/100 30/100
6 Appeals Filed, Lower Appeals Filed, Lower Authority 6.1-6.2 Minimum 2 per subpop 4
Authority
Appeals Filed, Higher Appeals Filed, Higher Authority 7.1-7.2 Minimum 2 per subpop 4
Authority
Lower Authority Appeals Decisions 8.1-8.52; Random 60/200 60/200
8.54-8.55
Lower Authority Appeals Lower Authority Appeals Decisions 8.33-8.52; | Missing 1 per subpop <21
8 Decisions 8.54-8.55 Subpops
Lower Authority Appeals Decisions 8.1-8.52; Outliers (TL) 5 highest, 5 10
8.54-8.55 lowest
9 Higher Authority Appeals | Higher Authority Appeals Decisions 9.1-9.20; Random 30/100 30/100
Decisions 9.22-9.23
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9.13-9.20; | Missing 1 per subpop <9
9.22-9.23 Subpops
9.13-9.20; | Outliers (TL) 5 highest, 5 10
9.22-9.23 lowest
10 Appeals Case Aging, Appeals Case Aging, Lower Auth 10.1-10.7 Outliers (TL) 5 highest, 5 10
Lower Authority lowest
11 Appeals Case Aging, Appeals Case Aging, Higher Auth 11.1-11.6 Outliers (TL) 5 highest, 5 10
Higher Authority lowest
Overpayment $ Established 12.1-12.7; | Random 60/200 60/200
12.9-12.15
Overpayments - - —
. Overpayment $ Established 12.1-12.7; | Missing 1 per subpop <13
12 Established 12.9-12.15 | Subpops
Overpayment $ Established 12.1-12.7; | Outliers ($) 5 highest, 5 10
12.9-12.15 lowest
Overpayment Reconciliation 13.1-13.34 | Random 30/100 30/100
Activities
13 Overpayment Overpayment Reconciliation 13.1-13.34 | Missing 1 per subpop <33
Reconciliation Activities | Activities Subpops
Overpayment Reconciliation 13.1-13.34 | Outliers ($) 5 highest, 5 10
Activities lowest
Aged Overpayments 14.1-14.12 | Random 30/100 30/100
Aged Overpayments 14.1-14.12 | Missing 1 per subpop <11
14 Aged Overpayments Subpops
Aged Overpayments 14.1-14.12 | Outliers ($) 5 highest, 5 10
lowest

NOTES:  The software draws the larger number of Random samples; the first 30 or 60 are investigated as acceptance samples and

the remaining 70/140 are only investigated if needed to produce an estimate after an ambiguous result.

Software selects Missing Subpopulation samples on the basis of subpopulations represented in the full 100-case or 200-case draw.

Not all subpopulations may be investigated if only first 30 or 60 cases of random sample are reviewed.

Outlier samples may be based on sorts by time lapse (TL), or dollar amount ($).
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B-2. Procedures for the collection of information in which sampling is involved.
e Statistical methodology for stratification and sample selection

0 B-1 above indicates that 17 samples are “random;” 11 are size 30/100, six 60/200.
The validation software draws samples of 100 or 200, as required; validators evaluate
the first 30 of 100 (60 of 200) as acceptance samples. This often results in a clear
pass or fail. If ambiguous findings result, the remaining 70 or 140 are evaluated to
estimate underlying error rates.

0 Supplemental samples of size one or two are also drawn from all unrepresented sub-
populations to check for the correctness of programming or to ensure that reporting
software uses the correct fields in the database.

0 To check for extreme (outlying) values, the 5 highest and 5 lowest values in report
elements classified by time lapse (e.g., 7 days and under, 8-14 days, over 70 days) or
report fields containing dollars are evaluated.

e FEstimation Procedure

0 Validators must determine whether each underlying population error rate is <5%.

0 The DV procedure specifies selection of random samples of 100 or 200, depending on
the importance of the underlying transactions.

0 The validator uses a sequential review procedure. The first 30 of the full 100, (or 60
of 200), sampled transactions are checked against agency documentation and the
number of errors (i.e., those which fail to conform to Federal definitions) are noted.

0 The first sequence treats the sampled transactions as acceptance samples of size 30 or
60 to determine whether a judgment can be made at that level or whether review of
the remaining cases in the sample is called for. If the result is inconclusive, or the
State wishes to estimate the probable underlying error in a population that has clearly
failed in the first stage, the additional 60 or 140 sampled transactions are verified and
a judgment is made from the 100- or 200-case estimation sample.

e The first stage procedure uses the following decision rules:

Pass Fail  Inconclusive
30 Cases 0 errors >5 1 - 4 errors (evaluate
remaining 70 cases)
60 Cases 0 errors >7 1 - 6 errors (evaluate

remaining 140 cases)

These decision rules (as well as those below for the full sample) assume that the samples of
transactions are selected without replacement from a large population, and that each transaction
in a sampled population of transactions has an equal chance of being selected into the main
sample of 100 or 200 and into the subsample of 30 or 60 that is used for the first stage. Based on
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these assumptions, the probabilities of any process passing or failing are computed using the
binomial formula.'

® Degree of Accuracy Needed for Purpose Described in the Justification.

0 The basic standard is that an extract file is considered reliable if no more than 5% of
the underlying records are invalid, i.e., contain one more data elements that do not
conform to Federal definitions If the error rate is above 5%, the State’s reported
counts are considered invalid even if the reported count equals the reconstructed
count because the reconstructed count cannot be assumed to be the standard for
comparison.. This means the State will have to take action to correct the extract file,
either by selecting elements differently or correcting the data in the database. The
sampling procedure must balance the costs of conducting the validation review
against the risks of (a) taking an unwarranted and probably expensive action to
correct a process whose true underlying error rate is less than 5% and (b) allowing
reporting errors to continue by failing to detect underlying populations whose error
rates exceed 5%. The Department only requires a state to take action on the basis of
the evidence of a random sample; the non-random benefits samples described in B-1
above provide diagnostic information but the Department does not require states to
act on the findings.

¢ The decision rules for the first stage are based on minimizing the chances of failing a
sample when the true error rate is acceptable (< 0.05). In the first stage, a process
passes only with zero errors, and fails if it has 5 or more errors (n = 30) or 7 or more
errors (n = 60). To find these cut-off points (pass, fail)

1The probability of exactly d events (in this case errors) occurring with n trials where the
population prevalence of these events is p (in this case the error rate) is expressed as:

n! d 1 n-d
[d!(n-d)!]p a-p)

n
P(d)Z[d]pd 1-p"’=
The probability that no more than ¢ events occurring is:

P(d <c) :i’ P(d)




for the first stage, we calculate the Type I and Type II error contributed from
the first stage based on the Binomial distribution with the actual error rate P =
0.05.> The cut-off for failing at the first stage is labeled C;.

To minimize the Type II error contributed from the first stage we require that
there be no error at all to pass the test at the first stage.

To find the optimal cutoff (C;), we compared Type I errors for different levels
of C,. The larger C, is, the smaller the type I error is. We want to choose C,

such that the Type I error ( p,)

- is below the 0.05 threshold; and
- is not too close to 0.05 (or too close to 0)

Table 1 gives the type I errors contributed from stage one upon different C, ’s.
From the table we can see that: for the sample size n; of 30, Type I error
would be larger than 0.05 if we choose C; at 4. On the other hand, partial
Type I error would be too small if we choose C, at 6. At C, =5, it is 0.01564,

a reasonable number given the criteria above. Hence we decide that the
optimal cutoff for n;=30 is 5 and similarly the optimal cutoff for n;=60 is 7.

* p,= Type I error contributed from first stage

=P(rejecting the null when it is true)

=P(=C, outcomes)
=1-P(d <C, - 1)

m=0

- Z[

p (1 nl d

where d is the number of errors

p, = Type Il error contributed from the first stage

=P(Accepting the null when it is false)

=P(0 outcomes)

- D)

nl

since for any event d, since 0! = 1 and p° =

P(d, =0)=(- p)"
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Table 1: Type I Errors from Stage One Upon Different Cutoffs at the First Stage

n;=30 n;=60
P C =4 C,=5 C =6 C =6 C =7 C, =8
0.01 0.00022 0.00001 0 0.00003 0 0
0.02 0.00289 0.00030 0.000025 0.00127 0.00020 0.00003
0.03 0.01190 0.00185 0.000233 0.00914 0.00210 0.00042
0.04 0.03059 0.00632 0.001061 0.03251 0.00989 0.00262
0.05 0.06077 0.01564 0.003282 0.07872 0.02969 0.00979

¢ Failure occurs when the number of errors is at least C; = 5 for n; = 30 and 7 when n; =
60). So the probability of failing can be expressed as 1 minus the probability of not
failing where the probability of not failing is the cumulative probability of having
fewer than c; errors.> The probability of passing at the first stage is the probability of
having zero errors. The probabilities of failing in the first stage when the true error
rate is < 0.05 and of passing at the first stage if the true error rate is > 0.05 are shown
in the following two tables.

Probability of Failing When the Error Rate is < 0.05 (Type I error for first

stage of sequential sample)

True Error Rate n;= 60 n;= 30
0.01 <.001 <.001
0.02 <.001 <.001
0.03 .002 .002
0.04 .010 .006
0.05 .030 .016

Probability of Passing When the Error Rate is > 0.05 (Type II error for

first stage of double sample)

True Error Rate n;= 60 n;= 30
0.05 .046 215
0.06 .024 .156
0.07 .013 113
0.08 .007 .082
0.09 .003 .059
0.10 .002 .042

e As noted, if the result is inconclusive, the State must evaluate the additional 60 or 140
sampled transactions and make a judgment from the 100- or 200-case estimation
sample. (The State may also wish do this to estimate the probable underlying error in

3For a given true error rate (p), the probability of failing is:

1—P(not failing) =1-P(d<C;-1)
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a population which has clearly failed in the first stage.)

¢ In the first stage, the methodology emphasizes avoiding Type II error. In the second
stage, it is structured to avoid Type I error. The cut-offs are set to ensure that if the
underlying error rate is less than or equal to 5%, the probability that a sample will fail
is <.05. If the underlying error rate is greater than 5%, probability that a sample will
fail is > .05 and increases as the underlying rate increases. The Type I error and
power probabilities are summarized in Table 2.

0 Thus the second stage decision rule is as follows:
Conclude Error Rate is

<5% >5%
Expanded Sample 100 <9 errors 10+ errors
Expanded Sample 200 <16 errors 17+ errors

In the second stage, there are only two outcomes: reject or fail to reject, so we only need to
compute the probability of rejecting the null hypothesis knowing the true error rate is P . This
probability is the probability of Type I error when the null hypothesis is true and is the power of
the test when the null hypothesis is false.*

The value of the second stage failure cut-offs C,, is that where conditional on Type I error
being below the 0.05 threshold, C, is such that the power of the test is the largest. Table 2 gives

the Type I error and the power of the test for some potential cutoffs. From the table we can see
that the optimal cutoff for 30/70 sample is 10 and the optimal cutoff for 60/140 sample is 17.

1 P(rejecting) =P (rejecting, first nl conclusive) + P(rejecting , first nl inconclusive)

G -1
=p + Z P(rejecting, d, errors in the first n1)

d,=
G-1 nl

=p, +Z Z P(d, errors in the second n2,d, errors in the first nl)
d,=d,=C,
ool (n1) (12| N

=p + { p" (- p)" " x 'p"‘ (1- p)"*
drad, =, | di d,
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Table 2: Type I Error and Power of the Test Upon Different Cutoffs in the Second Stage

Type I error

n =100 n =200

P C,=9 C,=10 C,=11 C,=16 C,=17 C,=18
Type I error Type I error

0.01 0.000012 0.000012 0.000012 0.000002 0.000002 0
0.02 0.000465 0.000329 0.000305 0.000198 0.000196 0.00020
0.03 0.004622 0.002568 0.002015 0.002419 0.002196 0.00213
0.04 0.022540 0.011884 0.008021 0.015451 0.012147 0.01075
0.05 0.068876 0.038260 0.024241 0.064142 0.047050 0.03789

Power Power
0.05 0.06888 0.03826 0.02424 0.06414 0.04705 0.03789
0.06 0.15310 0.09279 0.05930 0.17911 0.13402 0.10470
0.07 0.27197 0.18072 0.12097 0.36030 0.28608 0.22917
0.08 0.41082 0.29735 0.21151 0.56559 0.47959 0.40341
0.09 0.55088 0.42973 0.32548 0.74364 0.66785 0.59150
0.10 0.67648 0.56208 0.45148 0.86768 0.81414 0.75353

To compute the overall probability that the sample passes, one must take into account the ways
in which the sample can pass. We denote the number of errors in the first stage as d; and the
number from the second stage as d-, and the cut-off for the first sample as c;; and for the second
as ¢z The smaller sample (30/70), where ¢; =5 and ¢, = 10, can pass in any of five ways:

d1=0,

d1=1andd2<9
d1=2andd2<8
d1=3andd2<7
d1=4andd2<6

For the larger sample, (60/140) the ways the sample can pass follow the same pattern. More
generally, the sample will pass if:
d, =h,andd, <c, - h,whereh<c,

Given this, we can compute the probability of passing for any underlying error rate, as:

p(Pass) =P (Passl) + P(Pass2)

P(Passl) =P (d, =0)
p(Pass2) :FZ-I P(d, =h)P (d, =c, - h)

h=1

The joint results of the two-stage process produce the following probabilities for the two
sample sizes:
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Failing a Measure that Should Fail Failing a Measure that Should Pass

Error Rate .10 .09 .08 .07 .06 .05 .05 .04 .03 .02 .01
Sample

30/70 56 .43 .30 .18 .09 .04 .04 .01 .00 .00 .00
60/140 81 .67 .48 .29 .13 .05 .05 .01 .00 .00 .00

States that fail may wish to examine a confidence region for their
observed error rates. In the case where only the initial sample (30 or
60) has been examined, construction of a confidence region is
straightforward. Where the full sample (n = 100 or 200) has been
examined, the process is more complex. Below, lower confidence
bounds are presented for states to use. Lower bounds are presented
instead of confidence intervals, because states with high observed
error rates are more likely to find this measure of sampling error
useful.®

As discussed above, in determining whether a sample passed or failed the
states will test for each sample the null hypothesis that the true error rate is
less than or equal to 0.05. Constructing a lower confidence bound for an
observed error rate (p*) is analogous to the pass/fail determination. It can be
thought of as testing a hypothesis. However, to construct the confidence
bound, the test is of a different hypothesis: the true error rate equals the one
observed (i.e., p=p*) versus the alternative that the true error rate is less.
Thus, the procedures for finding a lower confidence limit are analogous to
those in determining the pass or fail cut-off points.

For constructing the confidence bounds the initial samples (n = 30 or 60)
can be treated as simple random samples with size n1 from a Binomial
distribution.

Therefore for an observed number of errors d, the corresponding lower
confidence bound is determined by finding p €[0,1], such that

dll
R(p*) =P(d =d,) errors =Z

i=0

nl
pd, (1_ p)nl-d, :1_ a

i

Confidence intervals or sets do not seem to be covered in industrial quality
control, where the sequential sampling procedures described in this section
are often used. In these settings, the concern is only with whether the batch
or sample passed or failed, not with the precision of the observed error rate.
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R(p*) is a decreasing function of P . For example, when n;=30 and d,=4,
(p* = .133). For @ =0.05, the corresponding solution is 0.069 so the lower

95 percent bound would be 0.069.

The following table gives the lower 95% confidence bound for n;=30
and n;=60 respectively.

Table 3: The Lower Confidence Bound for Simple Random Sampling

n1=30 n1=60
Errors Error Rate Lower Bound (95%) Errors Error Rate

0.00

0 0.000 0.002 0 0 0.002 0
0.03

1 0.033 N/A 1 3 N/A 1
0.06

2 0.067 N/A 2 7 N/A 2
0.10

3 0.100 N/A 3 0 N/A 3
0.13

4 0.133 N/A 4 3 N/A 4
0.16

5 0.167 0.091 5 7 0.091 5
0.20

6 0.200 0.115 6 0 0.115 6
0.23

7 0.233 0.141 7 3 0.141 7
0.26

8 0.267 0.167 8 7 0.167 8
0.30

9 0.300 0.194 9 0 0.194 9
0.33

10 0.333 0.222 10 3 0.222 10
0.36

11 0.367 0.250 11 7 0.250 11
0.40

12 0.400 0.279 12 0 0.279 12
0.43

13 0.433 0.309 13 3 0.309 13
0.46

14 0.467 0.339 14 7 0.339 14
0.50

15  0.500 0.370 15 0 0.370 15

16  0.533 0.402 16 0.53 0.402 16
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0.56

17 0.567 0.434 17 7 0.434
0.60

18  0.600 0.467 18 0 0.467
0.63

19 0.633 0.501 19 3 0.501
0.66

20  0.667 0.535 20 7 0.535

For n; = 30, 1 to 4 errors in the first sample will result in the second-
stage sample (n,= 70) being selected and for n; = 60, 1 to 6 errors will
result in the second-stage sample (n, = 140) being selected. Because
in these instances the error rate will be based on the full sample
(n=100 or n= 200), the lower confidence limits will be found in Table
5, and hence they are designated as N/A in this table.
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When both samples are used, errors are observed from both samples and the
samples are not independently selected (the second sample is used only if the
first sample is inconclusive). So to construct a lower bound for this case we
begin in a manner analogous to setting the cut off points for failing when the
purpose is to determine whether the sample passes or fails.

Thus, the lower bound is the smallest value of P such that:
H,.P<p*
is accepted (p* is the observed error rate). With this criterion, one can define
a decision rule for the sequential sampling. (The method for the decision
rule has already been illustrated above.) For example for the 30/70 sample,

Table 4 gives the optimal cutoff for some illustrative error rates.

Table 4: The Optimal Cutoff for p* in Sequential Sampling

nl =30 nl =60

P C1 C2 P Cl CZ
0.06 6 11 0.06 7 20
0.07 6 13 0.07 9 22
0.08 6 15 0.08 10 24
0.09 7 15 0.09 11 26
0.10 7 17 0.10 12 29
0.15 9 23 0.15 15 41
0.20 11 29 0.20 19 52

For each observed pair of errors, the lower 95% confidence bound is the
first P that the null hypothesis is going to be accepted upon this P . For
example, if there are 2 errors in the first stage and 5 errors overall, the
smallest P such that the null is accepted upon P is 0.020. Table 5 gives the
95 percent lower bound for the case where both samples are used.

Unusual Problems Requiring Specialized Sampling Procedures

0 The discussion above indicates that the methodology uses
specialized sampling procedures. Strictly speaking, none of
these are required. However, because of the scope of UL DV,
they are employed for efficiency. Most State Ul management
information systems are highly automated, and States are able
to obtain most data elements they report to the Department of
Labor as a byproduct of their ongoing functions of paying
benefits and collecting taxes. Thus, the greatest risks to report
validity are from systematic errors—incorrectly programmed
functions which miss certain elements, double count other
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elements, obtaining counts of transactions which do not meet
the Federal reporting requirements for the element being
reported, or programming which

Table 5: The Lower (95%) Confidence Bound for Sequential Sampling

Errors N=30/70 N=60/140
Lower Lower
Confidence Confidence
Total Fromnl Fromn2 Error Rate Bound Error Rate Bound
1 1 0 0.010 0.002 0.005 0.001
2 1 1 0.020 0.002 0.010 0.001
2 2 0 0.020 0.010 0.010 0.005
3 1 2 0.030 0.009 0.015 0.005
3 2 1 0.030 0.010 0.015 0.005
3 3 0 0.030 0.023 0.015 0.012
4 1 3 0.040 0.015 0.020 0.008
4 2 2 0.040 0.015 0.020 0.008
4 3 1 0.040 0.023 0.020 0.012
4 4 0 0.040 0.040 0.020 0.020
5 1 4 0.050 0.020 0.025 0.010
5 2 3  0.050 0.020 0.025 0.010
5 3 2 0.050 0.023 0.025 0.012
5 4 1 0.050 0.040 0.025 0.020
6 1 5 0.060 0.027 0.030 0.014
6 2 4 0.060 0.027 0.030 0.014
6 3 3 0.060 0.027 0.030 0.014
6 4 2 0.060 0.040 0.030 0.020
7 1 6 0.070 0.033 0.035 0.017
7 2 5 0.070 0.033 0.035 0.017
7 3 4 0.070 0.033 0.035 0.017
7 4 3 0.070 0.040 0.035 0.020
8 1 7 0.080 0.038 0.040 0.019
8 2 6 0.080 0.038 0.040 0.019
8 3 5 0.080 0.038 0.040 0.019
8 4 4 0.080 0.041 0.040 0.020
9 1,2,34 8,7,6,5  0.090 0.047 0.045 0.024
10 1,2,34 9,8,7,6  0.100 0.053 0.050 0.027
11 1,234 10,9,8,7 0.110 0.058 0.055 0.031
12 1,2,34 11,10,9,8 0.120 0.069 0.060 0.034
12,11,10,
13 1,2,34 9 0.130 0.075 0.065 0.037
13,12,11,
14 1,234 10  0.140 0.080 0.070 0.042
14,13,12,
15 1,234 11 0.150 0.092 0.075 0.046
15,14,13,
16 1,2,34 12 0.160 0.098 0.080 0.049
16,15,14,
17  1,2,34 13 0.170 0.110 0.085 0.054

B-15




17,16,15,

18 1,234 14 0.180 0.116 0.090 0.057
18,17,16,

19 1,234 15 0.190 0.123 0.095 0.060
19,18,17, 0.200 0.134 0.100 0.066

20 1,2,3,4 16

reflects a misinterpretation of Federal reporting
requirements. Systematic problems normally affect all
elements in a population grouping, so the examination
of just a few is sufficient to identify the problem. A
larger, random sample would of course identify the
same problem but at much higher cost. Similarly,
large random samples would probably detect the
existence of outliers in time lapse data or data
involving the reporting of dollar amounts. However,
small samples of transactions from the extremes of an
arrayed distribution do it much more efficiently.

e Use of Periodic Data Collection to Reduce Burden

o0 UI DV employs a 3-year cycle to reduce burden. Only the
components that fail validation (a discrepancy between a
reported count and a reconstructed count greater than 2%, or
quality samples showing more than a 5% rate of invalid cases
in the population examined) must be revalidated in the
following year.

0 The exception is the report cells used to calculate Government
Employment and Results Act measures. These must be
validated annually, and the reported count must be within
+1% of the reconstructed count.

B-3. Methods to Maximize Response Rates.

Although this collection is based on agency records, our
experience to date does indicate non-response in the sense that some
states have not been able to complete all or part of data validation. In
some cases, state resources have precluded them from doing all or
part of DV. In others, they have deferred part of DV pending the
installation of new administrative data systems. There have been a
few instances where the validation methodology cannot be applied
because the state reports are not automated, or the state validators
have concluded that their reports cannot pass validation or be

B-16




completely validated because their data systems lack key
information, e.g., the date a receivable was established. In all these
instances, states are required to include corrective action plans to
complete implementation of UIDV or to fix their reports and submit
their UI DV reports as part of their annual performance management
and budgeting plan (called the State Quality Service Plan). In the
course of validations, states often discover that the documentation for
certain reported transactions--e.g., nonmonetary determinations or
benefit appeals--is missing. In considering which transactions have
been reported accurately, validation does not distinguish between
missing documentation and other forms of errors; an adequately
documented transaction is considered an error.

B-4. Tests of Procedures or Methods.

e In 1998, three States—Massachusetts, Minnesota, and North
Carolina—pilot tested the UI DV methodology. A technical
support contractor, who employed as a subcontractor the
person who developed the UI DV methodology, provided
oversight of the pilot test. The contractor’s evaluation
indicated that the methodology functioned as intended and
enabled the States to detect, and correct, reporting errors. The
cost data from the pilot were the basis for the burden
estimates in the original request. In the first three years of
authorization, most states have completed at least parts of
validation requirements. Burden estimates for this request are
based on estimates provided by states that have completed
validations, and reflect assumptions consistent with a new
software environment.
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