Greenhouse Gas (GHG) Emission Requirements Heavy-Duty Pickup Trucks and Vans

Industry/EPA Workshop Compliance Division Washtenaw Community College November 3, 2011

Organization of Topics

Topics	Slide Numbers
Overview	3-4
Standards	5-16
Application for Certification	17-26
Credits	28-30
Reporting	32-33
Additional Information Sources	34-35

How Does This Apply to HD Pickup Trucks and Vans?

- Regulations are located at 40 CFR Part 1037
 - §1037.104 Exhaust Emissions Standards for CO2, CH4, N2O
 - § 1037.115 Other Requirements
 - § 1037.150 (a, b, c, e, f, g, h, i, l, m) Interim Provisions
 - § 1037.740 Restrictions for Using Emission Credits
 - § 1037.801 Definitions
- Applicable to 2014 and later model year new heavy-duty Vehicles
 - Specifically regulates emissions of carbon dioxide, nitrous oxide, methane, and hydrofluorocarbons
- Excluded Vehicles include:
 - Vehicles not meeting definition of "motor vehicle" or "heavy-duty vehicle"
 - Medium-duty passenger vehicles
 - Vehicles produced before 2014 model year, unless certified under §1037.150 (except early credits provision)
 - Vehicles subject to light-duty greenhouse gas standards of 40 CFR part 86
 - Small manufacturers qualifying under Small Business Administration regulations at 13 CFR 121

HD Pickup Truck and Van Program

- In general, the HD pickup truck and van program strongly resembles the existing non-GHG program for these vehicles and the existing LD GHG program
- Today's briefing focuses on the aspects of the program which are unique

GHG STANDARDS

HD Pickup Truck & Van CO2 Standards

- The HD Pickup Truck and Van CO2 emissions standards:
 - Begin in 2014MY
 - Are CO2 standards, not CREE
 - Represent a production-weighted fleet-average standard where all vehicles in this category form a single averaging set

Fleet-Average Standard =
$$\frac{\sum [\text{Target}_i \times \text{Volume}_i]}{\sum [\text{Volume}_i]}$$

 The GHG emission standards for these vehicles apply for a weighted average of 55% FTP City and 45% Highway test cycle (new requirement for Federal HD) where the vehicle is tested at Adjusted Loaded Vehicle Weight (ALVW)

HD Pickup Truck & Van CO2 Standards

Spark Ignition

Compression Ignition

CO2 Target (g/mile) = 0.0440 x WF + 339

CO2 Target (g/mile) = 0.0416 x WF + 320

WF = $0.75 \times (GVWR - Curb Weight + xwd) + 0.25 \times (GCWR - GVWR)$

Where:

xwd = 500 pounds if the vehicle has four-wheel drive or all-wheel drive; xwd = 0 pounds for all other vehicles.

HD Pickup Truck & Van GHG Phase-in

1037.150(b)

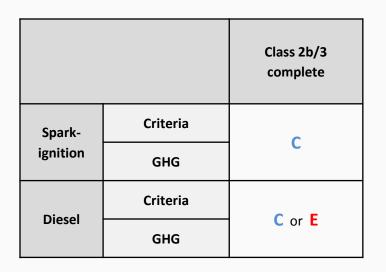
Table 1 to 1037.150

·
Alternate CO ₂ Target (g/mile)
$[0.0482 \times (WF)] + 371$
$[0.0479 \times (WF)] + 369$
$[0.0469 \times (WF)] + 362$
$[0.0460 \times (WF)] + 354$
$[0.0478 \times (WF)] + 368$
$[0.0474 \times (WF)] + 366$
$[0.0460 \times (WF)] + 354$
$[0.0445 \times (WF)] + 343$

Table 2 to 1037.150

-	
Model Year and Engine Cycle	Alternate CO ₂ Target (g/mile)
2014 Spark-Ignition	$[0.0482 \times (WF)] + 371$
2015 Spark-Ignition	$[0.0479 \times (WF)] + 369$
2016-2018 Spark-Ignition	$[0.0456 \times (WF)] + 352$
2014 Compression-Ignition	$[0.0478 \times (WF)] + 368$
2015 Compression-Ignition	$[0.0474 \times (WF)] + 366$
2016-2018 Compression-Ignition	$[0.0440 \times (WF)] + 339$

Optional Certification under §1037.104 1037.150(I)


- You may certify certain complete or cab-complete vehicles to the standards of §1037.104 (HD Pickup Truck and Van standards), such as:
 - Complete or cab-complete spark-ignition vehicles
 - Cab-complete vehicles based on a complete sister vehicle
 - Class 2b or 3 incomplete vehicles

Restrictions:

• Generally, does not affect criteria pollutant certification

HD Chassis-Certification Path #1 Complete HD Pickup Trucks and Vans

E = engine-certified (g/hp-hr) for criteria pollutants and treated as a vocational vehicle for GHG with separate engine certification (g/hp-hr) and vehicle certification with GEM (g/ton-mile)
C = chassis-certified (g/mile)
C or E = manufacturer can choose between chassis-certification and engine-certification

- Spark Ignition vehicles must chassis certify for both criteria and GHG emissions
- Diesel vehicles may choose to either:
 - Chassis certify for both criteria and GHG emissions -or-
 - Engine certify for criteria emissions and certify as a vocational vehicle for GHG emissions with separate engine certification and vehicle certification using GEM

Optional HD Chassis-Certification Path #2

Incomplete HD Pickups and Vans 1037.104(f), 1037.150(l)

		Class 2b/3 Incomplete		
Spark-	Criteria	С	Е	
ignition	GHG	C (sister)	E	
Criteria		С	_	
Diesel	GHG	C (sister)	E	

E = engine-certified (g/hp-hr) for criteria pollutants and treated as a vocational vehicle for GHG with separate engine certification (g/hp-hr) and vehicle certification with GEM (g/ton-mile)
C = chassis-certified (g/mile)
C and E = manufacturer can choose between chassis-certification and engine-certification

- Spark Ignition and Diesel vehicles may choose to either:
 - Chassis certify for both criteria and GHG emissions: further may use a sister vehicle for purposes of GHG compliance
 - -or-
 - Engine certify for criteria emissions and certify as a vocational vehicle for GHG emissions with separate engine certification and vehicle certification using GEM

Optional HD Chassis-Certification Path #3 Class 4 and Above Vehicles 1037.150(I)

		Classes greater than Class 3
	Criteria	E
Spark- ignition	GHG	C or E
Discol	Criteria	F
Diesel	GHG	E

E = engine-certified (g/hp-hr) for criteria pollutants and treated as a vocational vehicle for GHG with separate engine certification (g/hp-hr) and vehicle certification with GEM (g/ton-mile)
C = chassis-certified (g/mile)
C or E = manufacturer can choose between chassis-

certification and engine-certification

- Spark Ignition and Diesel vehicles must engine certify for criteria emissions
- Diesel vehicles must:
 - Certify as a vocational vehicle for GHG emissions with separate engine certification and vehicle certification
- •Spark ignition vehicles may choose to either:
 - Chassis certify for GHG emissions (2014MY and later) -or -
 - Certify as a vocational vehicle for GHG emissions with separate engine certification (2016MY and later) and vehicle certification using GEM (2014MY and later)

Optional HD Chassis-Certification Path #4 Loose Engine Provision 1037.150(m)

		Loose engines (for any HD vehicle class)
Spark-	Criteria	E
ignition	GHG	C (surrogate) or E
Diesel	Criteria	F
Diesei	GHG	E

E = engine-certified (g/hp-hr) for criteria pollutants and treated as a vocational vehicle for GHG with separate engine certification (g/hp-hr) and vehicle certification with GEM (g/ton-mile)
C = chassis-certified (g/mile)
C or E = manufacturer can choose between chassis-certification and engine-certification

- Spark Ignition and Diesel vehicles must engine certify for criteria emissions
- Diesel vehicles must:
 - Certify as a vocational vehicle for GHG emissions with separate engine certification and vehicle certification using GEM
- •Spark ignition vehicles may choose to either:
 - Chassis certify for GHG emissions using the highest ETW vehicle powered by the engine as a surrogate GHG result (with maximum of 15,000 engines or 10% of total HD engine production of the family; also not allowed to generate credits) –or –
 - Certify as a vocational vehicle for GHG emissions with separate engine certification and vehicle certification

HD Pickup Truck and Van N2O and CH4 Standards 1037.104(c)

• The GHG emission standards for these vehicles apply for a weighted average of 55% FTP City and 45% Highway test cycle

HD Pickup Truck and Van Standards (g/mile):

Model Years	CH4 Emissions	N2O Emissions
2014 and Later	0.05	0.05

• Use CO2 credits can be used to offset

HFC Standards 1037.115(c)

- HFC emissions are controlled through a leakage standard, not a credit program
- No averaging, banking, or trading of HFC credits is allowed
- The leakage of refrigerant from an A/C system may not exceed 1.50 percent per year
 - For systems with refrigerant capacities less than 734 grams, the leakage may not exceed 11.0 grams per year

Dual, Multi, or Flex Fuel Vehicles 1037.104(d)(10)

- Perform exhaust testing on each fuel type
- Use either the conventional fueled CO2 emission rate or a weighted average of the emission results as specified in 40 CFR 600.510-12(k)
- Must meet the N2O and CH4 standards on both fuels or:
 - Certify to an alternate standard for N2O or CH4 emissions (offset by the CO2 credit provision) and:
 - Not exceed the alternate standard when tested on either fuel.

CERTIFICATION

GHG Certification/Compliance Timeline

- Submit pre model year report with cert preview
- 90 days after end of model year:
 - Submit report including production volumes of vehicle subconfigurations
- 270 days after end of model year:
 - Submit final report

GHG Pre Model Year Report Templates will be available at www.epa.gov/otaq/certdat2.htm

PMY Reports for Class 2b-3 Pickup Trucks and Vans

- Required by EPA and NHTSA in accordance with 40 CFR 1037.104 (EPA) and 49 CFR 535.8 (NHTSA)
- Single submission through EPA database for both agencies
- Reports can be submitted:
 - As early as manufacturer's first pre-certification meeting with EPA and NHTSA
 - As late as manufacturer's first application submission for a certificate of conformity

PMY Report - Purpose and Contents

• Purposes

- Built on continuing long-standing process for LD CAFE program
- Provides early estimates of manufacturers' good faith efforts to comply with GHG and FC standards
- Pre-requisite for EPA approving manufacturers' applications for certificates of conformity
- Overview of Contents
 - Subconfiguration target and fleet standards
 - Test group and fleet certification results
 - Production volumes
 - Joint approvals for innovative technology
 - Certification statements for EPA and NHTSA
 - Credit plans

HD Pickup Truck PMY Template

Subconfigurations 1037.104(a)(4), 1037.104(d)(9)

- May group subconfigurations that have the same equivalent test weight, GVWR, and GCWR. Assume the curb weight equals two times ETW minus GVWR.
- May group together other subconfigurations if use the lowest target value for any of the subconfigurations
- Must test at least the greater of 10 subconfigurations or ten percent of subconfigurations (unless we approve a lower number)
- At least 90 percent of production volume in the configuration level must be represented by test data (actual data, data substituted, or analytically derived)

Analytically Derived CO2 (ADC) 1037.104(g)

- Provision allows the use of analytically derived CO2 emission rates based on baseline test data instead of measured emissions rates
- ADCs are similar to ADFEs used for light-duty vehicles
- Calculated using the equation below, rounded to the nearest 0.1 g/mile

 $ADC = CO2_{base} + 2.18 \cdot \Delta F0 + 37.4 \cdot \Delta F1 + 2257 \cdot \Delta F2 + 189 \cdot \Delta AR + 0.0222 \cdot \Delta ETW$

- ADC = Analytically derived combined city/highway CO2 emission rate (g/mile) for a new vehicle.
- CO2base= Combined city/highway CO2 emission rate (g/mile) of a baseline vehicle.
- Road load force coefficients
 - Δ F0 = F0 of the new vehicle F0 of the baseline vehicle.
 - Δ F1 = F1 of the new vehicle F1 of the baseline vehicle.
 - Δ F2 = F2 of the new vehicle F2 of the baseline vehicle.
- $\Delta AR = Axle$ ratio of the new vehicle axle ratio of the baseline vehicle.
- Δ ETW = ETW of the new vehicle ETW of the baseline vehicle.

ADC Constraints 1037.104(g)

- The baseline vehicle must (unless we approve otherwise)
 - Comply with all applicable emission standards in the model year associated with the ADC
 - Include in the pool of tests all official tests of the same or equivalent base engine, transmission class, engine code, transmission code, engine horsepower, dynamometer drive wheels, and compression ratio
 - May supplement the pool with tests associated with the worst-case engine or transmission codes and carryover or carry-across engine families
 - Must eliminate from the pool tests that were previously used during the model year as baseline tests in ten other ADC subconfigurations
 - Select the tested configuration with the smallest absolute difference between the ADC and the test CO2 emission rate as the baseline subconfiguration
- Downward adjustment of ADC from the baseline is limited to ADC values 20 percent below the baseline emission rate
- Upward adjustment is not limited
- No more than 40 percent of the subconfigurations tested in the final CO2 submission may be represented by ADCs

HFC Emissions

• An excel file is available to calculate percent leakage and leakage rate of HFC emissions

I. RIGID PIPE CONNECTIONS	3. FLEXIBLE HOSES		
Enter the number of each type of fitt	Enter the dimensions for each hose, by hose	se type, in the system.	
		4. HEAT EXCHANGERS, MUFFLERS, RECEIVER/DRIERS	S. AND ACCUMULATORS
Type of connection		Emission rate for all devices combined assumed to be 0.5	
Single O ring:			
Single captured O ring:	All Rubber Hose	Emission rate for all devices (g/year):	0.261
Multiple O ring:	High pressure side, hose 1		
Seal washer:	High pressure side, hose 2		
Seal washer with O ring:	High pressure side, hose 3	5. COMPRESSORS	
Metal gasket:	High pressure side, hose 4	Enter the number of each type of fitting in the appropriate c	ell below:
	Low pressure side, hose 1		
Rigid pipe connections emission	Low pressure side, hose 2	Type of Fitting	No.
	Low pressure side, hose 3		1
	Low pressure side, hose 4	O-ring housing seals:	
2. SERVICE PORTS AND REFRIGERA Standard barrier or veneer hose		Molded housing seals:	1
nter the number of each type of po	High pressure side, hose 1	Fitting adapter plates:	1
	High pressure side, hose 2	Gasket housing seals:	
Type of connection	High pressure side, hose 3	Lips on shaft seal (belt-driven compressors only):	1
High side service ports:	High pressure side, hose 4		
Low side service ports:	Low pressure side, hose 1	Comprossor omission rate (g/year):	11.223
Switches, transducers, and press	Low pressure side, hose 2	Compressor emission rate (g/year):	11.223
Refrigerant control devices:	Low pressure side, hose 3		
	Low pressure side, hose 4	6. REFRIGERANT CAPACITY FOR SYSTEMS WITH GRE	
Service port/control device emiss	Ultra-low permeation barrier or veneer	Enter the system's refrigerant capacity in grams in the app	ropriate cell below:
	High pressure side, hose 1	Refrigerant Capacity (g)	1300
	High pressure side, hose 2		
	High pressure side, hose 3	FOR REFRIGERANT CAPACITY FOR SYSTEMS WITH L	ESS THAN OR FOLIAL TO 733 GRAM
	High pressure side, hose 4		
	Low pressure side, hose 1	TOTAL SYSTEM REFRIGERANT EMISSION RATE (G/YE	AR): 19.2
	Low pressure side, hose 2		
	Low pressure side, hose 3	FOR REFRIGERANT CAPACITY FOR SYSTEMS WITH G	REATER THAN 733 GRAMS
	Low pressure side, hose 4	TOTAL SYSTEM REFRIGERANT PERCENT LEAKAGE (%	(YEAR): 1.5%

STATES FOR THE PROTECTION

HFC Emissions

- Provide HFC Emission Summary Sheet for A/C systems with application
- Maintain records for each air conditioning system configuration

	A/C Syster	m Information				Leaka	ge Inputs			A/C Leak	age Rate
A/C system number	Refrigerant	Refrigerant GWP, if other than R134a	Production Volume	Rigid Pipe Connectins emission rate	Service port/control device emission rate (g/year):	Hose permeation rate (g/year):	Compressor emission rate (g/year):	Refrigerant Capacity (g)	Refrigerant GWP, if other than R134a	Total System HFC Emission Rate (g/year)	Total System HFC Percent Leakage (%/year)

Production and In-use Standards

- Each vehicle has an in-use CO2 standard that is calculated from the test results and applies for selective enforcement audits and in-use testing.
 - The in-use CO2 standards is equal to the deteriorated emission level * 1.10, rounded to the nearest 0.1 g/mile
 - For multi-fuel vehicles, must determine in-use CO2 standards for each fuel
- The in-use $N_2O \& CH_4$ standards are the FEL (no multiplier)
- Unlike LD GHG IUVP program, manufacturers are not required to perform any GHG measurements or specific tests for HD pickup trucks and vans
- EPA In-use Surveillance Testing
 - EPA may measure CO2, N_2O , CH_4 on 2014 and later in-use vehicles
 - FTP and Highway cycles only
 - Any failures or unusual results would need to be addressed by the manufacturer

CREDITS

THE STATES - DEPT

CO2 Credits

Sum of five <u>independent</u> calculations (calculated separately for each averaging set) = total credits in a model year

- 1. Averaging, Banking, and Trading
 - 1037.150(m) loose engines certified under this provision cannot generate credits
- 2. Early Credits 1037.150(a)
- 3. Innovative Technology Credits 1037.104(d)(13)
- 4. Advanced Technology Credits 1037.150(i)
- 5. CO2 credits to show compliance with CH4 and/or N2O standards 1037.104(c)

Credits are always rounded to the nearest whole megagrams (Mg)

GHG Credit Programs

Early Credits – 1037.150 (a)(2): •2013 MY only (except electric vehicles) •Entire fleet • No multiplier	 <u>Advanced Technology Credits –</u> <u>1037.150(i):</u> •Vehicles with Rankine cycle, electric vehicles, fuel cell vehicles, and hybrid powertrains •Only a single certifier may establish credits for an advanced technology, no double counting credits •1.5x multiplier – 1037.150(i) 	Innovative Technology Credits – 1037.104(d)(13): •Vehicle or engine technology which is not captured on test and not in common use in 2010 MY for heavy-duty pickups and vans •Do not need justification for not using the 5-cycle •No multiplier
Restrictions: •Credits stay in averaging set – 1037.740(a) •5 year credit life - 1037.740(c)	<u>Restrictions:</u> •Credits can go into any averaging set, except only 60,000 Mg CO2 credits can come into a service class from another service class - 1037.740(b) •5 year credit life – 1037.740(c)	Restrictions: •Credits stay in averaging set – 1037.740(a) •5 year credit life - 1037.740(c)

GHG Credit Programs (cont.)

CO2 Credits to Offset CH4 and/or N2O FEL - 1037.104(c):

- •_Calculate the CH4 and/or N2O emission credits needed using the equation:
- Emission credits needed (Mg) = (FEL Standard) \cdot (Volume) \cdot (UL) \cdot GWP \cdot (10-6)
- where GWP of CH4 is 25 and GWP of N2O is 298 Mg

Restrictions:

None

REPORTING

Compliance Information

- EPA is committed to both protecting CBI and to achieving transparency in implementation of the GHG program
- EPA currently publishes:
 - Compliance Report
 - Certification data (certification testing summary)
- EPA does not consider emissions data to be CBI
- For GHG, EPA intends to publish as much non-CBI information for each manufacturer after the end of the model year as possible

AND DESTANTED STATES

Future Guidance

- EPA will issue guidance on future subjects when and if necessary.
- Please use the index cards to submit questions

For More Information:

- A copy of this presentation will be available at www.epa.gov/otaq/climate/regulations.htm
- See GHG rulemaking documents at www.epa.gov/otaq/climate/regulations.htm
- See Federal Register at 76 FR 57106, September 15, 2011
- See Code of Federal Regulations, 40 CFR Part 1037 and Part 86
- Contact your EPA team member