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Abstract 
The 2009 Public Employment Survey uses a new multi-stage sample method which combines 
cut-off sampling based on unit size with stratified sampling to reduce the sample size, save  
resources, and improve the precision of the estimates.  In this paper, we propose fitting either two 
separate linear models within size-based strata or one overall, based on the results of a hypothesis 
test of equality of the model coefficients.  We will study the properties and variance of this 
estimation method. Data from the 2007 Census of Government Employment will be used to  
compare our method to previous regression method.  

Key Words: survey  design, model-based estimator, regression, stratification, and optimum  
allocation 
 
1. Introduction 

The Annual Public Employment Survey provides current estimates for full-time and part-time 
state and local government employment and payroll by  government function (i.e., elementary and  
secondary education, higher education, police protection, fire protection, financial administration,  
judicial and legal, etc.). This survey covers all state and local governments in the United States,  
which include counties, cities, townships, special districts, and school districts.  The first three 
types of governments are referred to as general-purpose governments as they generally cover 
several governmental functions.  School districts cover only the education function.   Special 
districts cover generally one, but sometimes two functions.  These are the only sources of public 
employment data by program function and selected job category.  Data on employment include  
number of full-time and part-time employees, gross pay, and hours paid for part-time employees.   
Reported data are for each government’s pay period that includes March 12.  Data collection 
began in March and continued for about seven months.  
 
The methodology, questionnaires, full set of governmental functions, and classification manual  
are available on www.census.gov/govs/index.html. 
 
In 2007, the Committee on National Statistics, National Research Council, released the findings  
of a two-year study of the U.S. Census Bureau’s surveys of state and local governments.  In  
response to the recommendations given in the study and also to concerns about small units 
expressed by Census Bureau survey analysts, we decided to look into ways to modify the 
sampling method.  
 
Currently, a stratified, modified probability proportional-to-size sample method is used to obtain  
annual national and state level estimates.  The current sample design yields a large number of 
small townships and special districts.  These units only account for a very small part of the final  
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estimates, and have a poor response rate. Within a geographic area, there is usually very little 
variability in the responses from small units for the same type of government.  The objective of 
this research was to design a sample that would reduce the number of small units in certain 
problematic areas of the country.  

After exploring possible cut-off sample methods for the Annual Public Employment Survey, we 
suggested an alternative sample method based on the current stratified sample design to reduce 
the sample size, save resources, and improve the precision of the estimates.  We introduced a 
modified cut-off sample method, which was achieved in two stages. We first stratified the sample 
by state and government type.  Later, we applied a cumulative square root frequency method to 
determine the cut-off point with respect to the size of unit in the problematic special districts and 
sub-counties (cities and townships) with two constraints:  1) sample size in the stratum is more 
than 50; and 2) sample size below the cut-off point is more than 20.  The cut-off point serves as a 
decision point for distinguishing small and large governmental units in the stratum. In the second 
stage, we applied a sub-sampling method with a fixed rate for these special districts and sub-
counties satisfying the two conditions given above.  For more information on the methodology, 
see Barth et al. (2009). 

2. Standard Approaches to Estimation 

Before we investigate a new estimation procedure that corresponds to the new modified cut-off 
sample method, let’s first introduce some notation and definitions. Let U be a finite population of 

all local governments.  There are 89,526 units in our universe, where g is the 

state index, and h represents the government type (h=1 for county governments, h=2 for sub-
ounty governments – includes municipal governments and township governments, h=3 for 
pecial districts, and h=4 for school districts).  

c
s

G H 

 U = UUU gh , 
g =1 h=1 

et X denote the variables of interest from the 2002 Census of Government Employment, such as 
ull-time employment, full-time payroll, part-time employment, and part-time payroll.  Let Y  
enote the corresponding variables we measured in  2007.  Also, we define a new variable, Total  
ay, for each government unit by combining the full-time and part-time payrolls.  We used Total 
ay as the size of each government unit when we applied the proportional-to-size sampling 
ethod. 

efore we introduce our proposal for estimation, we demonstrate how the standard estimation 
pproaches work for the modified cut-off sample method.    

L
f
d
P
P
m

B
a

2.1 Design-Based Approach 
 
The first standard approach is a design-based method.  We apply the Horvitz-Thompson (H-T) 
estimator (Cochran, 1977, p. 259).  For given state g and government type  h, a sample of  
ngh units is selected, without  replacement.  Let π ghi  be the first-order inclusion probability for 

the ith unit in the sample, and π ghi, j  be the second-order inclusion probability when the ith and  

jth units are both in the sample.  The Horvitz-Thompson (1952) estimator of the population total, 
N 

Y = ∑∑∑ yghi , is 
g =1 h=1 i=1 

G H gh 
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G H ngh y

Y$ HT = ∑ ∑ ∑ ghi 
 

g=1 h=1 i=1 π ghi 

 

where yghi  is the measurement of the variable of interest  for the ith sampled unit in state g and 

government type h. 

The H-T estimator, HT , is an unbiased estimator of Y, with theoretical variance 
N	 N NG H gh	 G H gh gh(1 −π )	 (π −π π )

                   2	 V (YHT ) = yghi + 2 yghi yghj 
g =1 h=1 i=1 π ghi g =1 h=1 i=1 j〉i π ghiπ ghj 

                         
gh	 gh gh

ghi 2	 ghi , j ghi ghjV̂ (Ŷ 
HT ) = ∑∑∑  2 

yghi + 2∑∑∑∑  yghi yghj 
g =1 h=1 i=1 π ghi g=1 h=1 i=1 j〉 i π ghiπ ghjπ ghi , j 

n	 n nG H G H (1−π )	 (π −π π )
An unbiased sample estimator of V (Ŷ 

HT )  is 

ghi ghi, j ghi ghjˆ ∑∑∑  ∑∑∑∑  

Y$ 

 
For this paper, we tested the estimator and variance estimator only for selected states: Alabama,  
California, Pennsylvania, and Wisconsin.  These states were selected because they represent  
small states, large states, township states with fully functioning township governments 
(Pennsylvania) and townships that have limited government functions (Wisconsin).  Also, we 
reduced the sample size in sub-county government units in Alabama, reduced the sample size in 
special districts in California, and reduced the sample size in both sub-counties and special  
districts in Pennsylvania and Wisconsin. Thus, we end with having five strata in Alabama 
(counties, small sub-counties, large sub-counties, special districts, and school districts), five strata 
in California (counties, sub-counties, small special districts, large special districts, and school  
districts), and six strata in Pennsylvania and Wisconsin (counties, small sub-counties, large sub-
counties, small special districts, large special districts, and school districts).  Table 1 displays  
actual numbers from the 2007 Census of Government Employment, compared with the H-T 
estimator, difference between the true value and H-T estimator, relative difference, and  
Coefficient of Variation (CV) of the H-T estimator.    
 
Table 1: 	Comparison of the H-T Estimates based on PES to 2007 Census of Government      

Employment 
Source: U.S. Census Bureau, 2007 Census of Government Employment.  Payroll is in $1,000s. 
 2007 Census of 

Government  
Employment 

H-T 
Estimate 

Difference Relative 
Difference 

(%) 

CV (%) 

Alabama      
Full-time 
Employment 

183,506 188,539 5,033 2.74 1.97 

Full-time 
Payroll 

552,926 563,886 10,960 1.98 1.90 

Part-time 
Employment 

28,281 25,538 -2,743 -9.70 4.63

Part-time 
Payroll 

24,747 24,198 -549 -2.22 2.84

California   
Full-time 
Employment 

1,228,513 1,214,564 -13,949 -1.14 0.68 
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Full-time 
Payroll 

6,626,856 6,583,673 -43,183 -0.65 0.48 

Part-time 
Employment 

509,494 499,394 -10,100 -1.98 1.97 

Part-time 
Payroll 

715,268 699,111 -16,157 -2.26 1.42 

Full-time 
Employment 

384,145 388,250 4,105 1.07 1.96 

Full-time 
Payroll 

1,493,150 1,525,592 32,443 2.17 1.66 

Part-time 
Employment 

111,050 128,262 17,212 15.50 8.69 

Part-time 
Payroll 

98,620 108,772 10,152 10.29 8.53 

Full-time 
Employment 

181,370 177,861 -3,509 -1.93 1.76 

Full-time 
Payroll 

702,900 706,111 3,212 0.46 1.06 

Part-time 
Employment 

91,103 103,087 11,984 13.15 15.04 

Part-time 
Payroll 

82,044 82,554 510 0.62 6.01 

In examining these data, we conclude that the weights among the sample units are properly 
distributed. For a given 95 percent significant level, all true values are falling into the confidence 
interval of the H-T estimator. The CVs for full-time employment and full-time payroll by state 
are very small.  CVs for part-time employment and part-time payroll by state are reasonable and 
stable, except for part-time employment in Wisconsin.  These CVs show that the variability of 
full-time variables is much smaller than that of part-time variables. 

2.2 Model-Based Approach 
 
The second standard approach is a model-dependent method.  When using a probability sampling 
design, some still prefer inferences that are model-dependent.  The linear regression estimation is 
a method used to increase precision by the use of an auxiliary variable, xi , the information from 

2002 Census of Government Employment, which is correlated with the same information, yi , in 

2007.  In model-dependent inference, no matter how the sampling plan and estimator are 
obtained, inference is made on the basis of the model.  Those using model-dependent methods 
have asserted that once the sample is drawn, the probabilities of selection are irrelevant.  They 
regard the assumption of a model and the use of a best estimator under the model as essential. 
Model-dependent design and inference may have substantial advantages if the model is 
appropriate. Based on prior experience or from scatter plots on the variables of interest from the 
individual sampled local government units, the relationship observed between 2002 and 2007 
could be represented approximately by a straight line, and the variability around the regression 
line increases as x increases.  When the relation between xi  and yi is examined, it may be found 

that although the relation is approximately linear, it does not need to go through the origin.  Thus, 
we propose a simple linear regression model:  
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                          yghi = agh + bgh xghi + ε ghi , ∀g = 1,...,G;h = 1,..., H ;i = 1,..., ngh 

where yghi and xghi  are obtained for every  government sample unit in state g and type of 

government h. We can estimate agh and bgh  using only the sample data.  Therefore, the linear 

regression estimate of the total population, Y, is 

                                                         ŷr = âgh + bgh xghi 
g =1 h=1 i=1 

ˆ∑∑∑
gh 

            
G H 

ˆŷr = ∑∑N gh ygh + bgh (X gh − xgh )  
g =1 h=1 

                                     ( )
or 

NG H  ( )

where b̂ 
gh is called the linear regression coefficient of yghi on xghi  in the finite population and is 

computed from the sample.  The least square estimate of bgh is 

                                                       
∑ xghi − xgh yghi − ygh 

ˆ i=1bgh = 
n	 

,
gh 

2∑(xghi − xghi ) 
i=1 

 âgh = ygh − bgh xgh , xgh =	 xghi and y  y
n gh = ghi  

gh i=1 ngh i=1 

gh	 gh 1 1 n n

where ˆ ∑ ∑

ghn

( )( )

 

 

If the model holds, the variance of the  model-dependent estimator is reduced regardless of the  
procedure used for sample selection.  We only  need to estimate the parameters for slope and 
intercept from the sample. In most cases, the regression line goes through the origin when we 
observe the sample scatter plots.  If the straight line goes through the origin, then the best 

estimator of slope, b, is simply the ratio of the sample means, i.e.,  b̂gh = ygh / xgh . 

Based on the assumptions of the model-based approach, we can obtain the approximate  
theoretical variance of the regression estimator ŷr as 

G H 

( ) 

 

gh gh gh 2 2V ( )ŷr ≈∑∑ Sgh, y 1− ρ gh  
g=1 h=1 ngh 

where ρ = S (S gh,x * S gh, y )  is the population correlation between variables xgh and ygh ,gh gh,xy 

Ngh	 N gh 

2 1 2 2 1	 2Sgh,x = ∑(xgh,i − xgh ) and S gh, y = ∑(y gh,i −y gh ) are the population 
N gh −1 i=1 N gh −1 i=1 

N gh1
variances, and S gh, xy = ∑(xghi − xgh )(y ghi − y gh ) is the population covariance. The

N gh −1 i=1 

unbiased sample estimator of V (ŷ y ) is 

N (N − n ) 
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gh (xghi − xgh )] .V y 
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Again, we apply the linear regression model and calculate the model-dependent estimator and its 
variance estimator based on the same sample data from Alabama, California, Pennsylvania, and 
Wisconsin for full-time employment, full-time payroll, part-time employment, and part-time 
payroll.  The model-dependent estimators for full-time employment and full-time payroll are as 
good as the H-T estimators when compared to the marginal survey total from 2007 Census of 
Government Employment.  Also, the CVs of the survey total estimate from the model-dependent 
approach are smaller than from the design-based approach.  For part-time employment and part-
time payroll, model-based estimates give us better estimators and smaller variation.  Therefore, 
we conclude that the estimates from the model-dependent method have better precision than those 
from the Horvitz-Thompson method. 

2.3 Model-Assisted Approach 

The model-assisted methodology is commonly used in the Census Bureau, and is a method 
between the design-based approach and the model-based approach.  We assume the model fits the 
population reasonably well.  However, we cannot make the assumption that the population was 
really generated by the model.  Ultimately, the model serves as the vehicle for finding an 
appropriate regression coefficient to put into the regression estimator formula.  The efficiency of 
the regression estimator, as compared to the design-based estimator, will depend on the goodness 
of the fit.  The basic properties (approximate unbiasedness, validity of the variance formula, etc.) 
are not dependent on whether the model holds or not.  This procedure is called model-assisted, 
not model-dependent.  

For a simple linear model, we can estimate the parameters, agh  and bgh from the whole 

population.  Because we do not know the whole population, we use data from the sample to 
calculate the statistics that are used to estimate the slopes and intercepts in the universe. 
Therefore, model-assisted estimates are determined by both model selection and sample design.   

Given state g and government type h when g = 1,..., G; h = 1,..., H , we can write the population 

least squares line relating to and asxghi yghi

                          yghi = agh + bgh xghi + ε ghi , ∀g = 1,...,G;h = 1,..., H ;i = 1,..., N gh 

   

 

 

The parameters agh and bgh are defined in terms of population first and second moments as 

follows: 

 ˆ ˆ 2 S 2â = Y − b X and b = Sgh gh gh gh gh gh,xy gh,x 

where is the population covariance, 2 is the population variance, and and areS gh,xy Sgh,x X gh Ygh

the population means. To obtain estimators, we replace population moments in the above 
formulas with design-weighted sample moments. We have  

gh

∑ xghi − xgh yghi − ygh π ghi

 ˆ i=1b = 
gh 

2 
gh n 

( )∑ xghi − xgh π ghi 
i=1 

n

( )( )

where xgh  and ygh are the Horvitz-Thompson estimators of  X gh  and Ygh . 

 
The approximate unbiased sample variance estimator is   
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G H ngh 

ˆV̂ ( )ŷr ≈∑∑ 
1 ∑[(yghi − ygh )−bgh (xghi − xgh )]2 

π ghi(n − 2)g=1 h=1 gh i=1 

 

 
 

 
   

 
 
 

 

  

 

From the same data set in Alabama, California, Pennsylvania, and Wisconsin, we can calculate 
the survey total estimates using a model-assisted approach, and compare the results to the 2007 
Census of Government Employment.  We then calculate the variance estimators of survey total 
and CVs for four states and four variables.  All results are listed in Table 2 below.  We conclude 
the following significant results: 1) all CVs in the model-assisted approach are much smaller than 
the H-T estimates; 2) the ranges of relative differences between the model-assisted estimates and 
the totals of 2007 Census of Government Employment is from 0.02 percent to 7.65 percent, 
which can be compared with the ranges of relative differences between the H-T estimates and the 
totals of 2007 Census of Government Employment (from 0.62 percent to 15.50 percent), and in 
most cases, the relative difference improves when applying the model-assisted method; and 3) the 
model-assisted estimation significantly improves the precision of survey total estimates for part-
time employment and part-time payroll. When the data follows the model, we have very similar 
estimates for model-assisted and model-dependent methods.  Estimates are much better using a 
model-assisted approach than the model-dependent when the models do not fit.  Compared with 
Table 1, we find that the model-assisted methods are much better than the H-T estimator for this 
sample design. 

 

 

 

 

 

 

 

Table 2: 	Comparison of Model-Assisted Estimates on PES to 2007 Census of Government 
Employment 

Source: U.S. Census Bureau, 2007 Census of Government Employment.  Payroll is in $1,000s. 
 2007 Census of 

Government  
Employment 

H-T 
Estimate 

Difference Relative 
Difference 

(%) 

CV (%) 

Alabama      
Full-time 
Employment 

183,506 194,894 11,388 6.21 0.16

Full-time 
Payroll 

552,926 578,307 25,381 4.59 0.16

Part-time 
Employment 

28,281 30,445 2,164 7.65 0.56

Part-time 
Payroll 

24,747 25,909 1,162 4.70 0.39

California   
Full-time 
Employment 

1,228,513 1,220,421 -8,092 -0.66 0.07 

Full-time 
Payroll 

6,626,856 6,594,102 -32,754 -0.49 0.09 

Part-time 
Employment 

509,494 509,377 -117 -0.02 0.10

Part-time 
Payroll 

715,268 716,422 1,154 0.16 0.14

Pennsylvania   
Full-time 
Employment 

384,145 391,407 7,262 1.89 0.11

Full-time 
Payroll 

1,493,150 1,542,324 49,174 3.29 0.10 
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Part-time 
Employment 

111,050 117,341 6,291 5.66 0.18 

Part-time 
Payroll 

98,620 98,568 -52 -0.05 2.81 

Full-time 
Employment 

181,370 182,707 1,337 0.74 0.10 

Full-time 
Payroll 

702,900 716,115 13,215 1.88 0.10 

Part-time 
Employment 

91,103 97,070 6,272 6.91 0.22 

Part-time 
Payroll 

82,044 81,328 -716 -0.87 0.30 

2.4 Summary 

Using the 2002 Census of Government Employment as the new universe sample frame, we 
applied the modified cut-off sample method to select mock samples from the 2007 Census of 
Government Employment.  We calculate the survey total estimates for four variables of interest: 
full-time employment, full-time payroll, part-time employment, and part-time payroll in 
Alabama, California, Pennsylvania and Wisconsin.  Later, we compare these estimates using 
three standard methods (the design-based approach, the model-dependent approach, and the 
model-assisted approach) with the true values we get from the 2007 Census of Government 
Employment.  For full-time employment and full-time payroll, the estimates from design-based, 
model-dependent, and model-assisted all look good. Estimates from the design-based and the 
model-assisted approaches are slightly better.  For part-time employment and part-time payroll, 
we conclude that the estimates from the model-assisted method and the model-dependent 
approach are better than the design-based approach.  Additionally, we find that when the data fit a 
model very well, the model-dependent approach appears to have better estimates and variance 
estimators.  Because we sampled with probability proportion-to-size and the size of government 
is the total pay, we find that the design-based estimates work well for full-time payroll and full-
time employment cases.  But, if the model fit is not perfect and the sample design is problematic, 
the model-assisted method works better than the design-based and model-dependent methods.  In 
most of the cases, we find that the model-assisted estimators are better than H-T estimators and 
model-based estimators for part-time employment and part-time payroll.  

3. Decision-Based Approach 

Now, we introduce a decision-based approach in order to improve the precision of estimates and 
reduce the mean square error for the survey total estimate.  The idea is to test the equality of 
linear regression lines to determine whether we can combine data in different strata. Let us start 
with the following Lemma . 

Lemma: When we fit two linear models for two separate data sets, if a = a and b = b , then1 2 1 2 

the variance of the coefficient estimates is smaller for the combined model fit than for two 
separate stratum models when the combined model is correct. 

For some sub-counties and special districts that satisfy the sample size described in Section 1, we 
apply a cumulative square root frequency method and create two strata within the same type of 
government: small units group and large units group.  Data from small and large government 
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units are drawn from the same government type.  Should we estimate the survey total of key 
variables by combining small and large unit data or should we keep them separately?  To answer 
this question, we test the equality of two linear regression lines in small versus large government 
units within sub-counties and special districts (where sub-sampling has occurred in the small 
government units stratum).  Secondly, we evaluate the linear regression among all four types of 
governments within any given state to determine whether we can combine data with different 
government types. 

3.1 Test of Two Regression Lines 
 
We have the following procedure to test two linear regression lines.  First, we compare the slopes 
by testing the null hypothesis that the slopes are identical (the lines are parallel).  The test statistic 

ˆ ˆ( )  

 

  

is t = b − b s , where the standard error of the difference between thegh gh,1 gh,2 b −bgh ,1 gh , 2 

regression coefficients is 
2 2(s )

p 
(s )

pgh,xy gh,xy
s = +b −bgh,1 gh,2 ⎛ ⎞ ⎛ ⎞

⎜ 2 ⎜ 2 

⎜ ∑xgh,i ⎟
⎟ 

⎜ ∑xgh,i ⎟
⎟ 

i∈S i∈Sgh,1 gh,2⎝ ⎠1 ⎝ ⎠2 

and the pooled residual mean square is calculated as 
2 2∑(ygh,i − ŷ gh,i ) + ∑(ygh,i − ŷgh,i ) 

i∈S i∈S(sgh,xy ) = ,
p n1 + n2 − 4 

where the subscripts 1 and 2 refer to the two regression lines being compared.  The critical value 
of tgh  for the test has (n1 − 2)  (  + n2 − 2)  degrees of freedom, namely, vgh = ngh,1 + ngh,2 − 4 . 

2 gh ,1 gh , 2 

If the P value is less than 0.05, we reject the null hypothesis and conclude that the regression lines 
are significantly different.  In this case, there is no reason to compare the intercepts.  If the P 
value for comparing slopes is greater than 0.05, we can’t reject the null hypothesis.  Therefore, 
we conclude that the slopes are not significantly different. Now, we calculate a single slope from 
combining two data sets.  Our next question is whether two regression lines are either parallel or 
identical. 

We test whether two regression lines are parallel or identical by checking whether the two 
regression lines have the same intercept. To do this, we need to calculate the slope and intercept 
for the two combined data sets.  Also, we need to develop an appropriate test statistic as follows: 

ˆ( ) ( )

9 

 
   gh,1 gh,2 gh,c gh,1 gh,2t = gh 

⎡ ⎛ ⎤ 
2 ⎜ 2 ⎟(sgh,xy ) ⎢1 ngh,1 +1 ngh,2 + (xgh,1 − xgh,2 )2 ∑ xgh,i 

⎞
⎥ 

c ⎜ ⎟⎢ i∈Sgh ⎥⎣ ⎝ ⎠⎦ 
where bgh,c  is a slope for the combined two data sets,  ( 2 is the mean square of residual for

s gh,xy )c 
 ˆ 

2 
⎛ ⎞ ⎛ 

2 
⎞

⎜ ∑ x , 
⎟∑ ygh,i − ⎜

⎜ ∑ xgh,i ygh,i ⎟
⎟ 

gh i⎜ ⎟
i∈Sgh ⎝ i∈Sgh ⎠ ⎝ i∈Sgh ⎠the combined regression, which equals to . If the P value 

n − 3gh 

y − y −b x − x 
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is low, we reject the null hypotheses, and conclude that the regression lines are not identical.  If 
the P value is high, we can’t reject the null hypothesis, and must conclude that there is no 
compelling evidence that the regression lines are different.   

3.2 Test of More Than Two Regression Lines 

Similarly, we test slopes first, and then test intercepts.  To compare more than two slopes, we can 

test H 0 : b1 = b2 = ... = bk with k > 2 against the alternative hypothesis that the k regression 

lines were not derived from samples estimating populations among which the slopes were all 
equal. To compare k regression lines, we need to calculate the sample variance of x and y, the 
sample covariance of x and y, and the sums of squares of the residuals and the degrees of freedom 
for each regression line. The pooled residual sum of square (SS p ) is the sum of k individual sum 

of squares of the residual. The common residual sum of squares (SSc ) is 

                                                   

bk  we calculate the 

F statistic 

yi − y − xi − x yi − y xi − x . To test H 0 : b1 = b2 = ... = 
i=1 i=1 i=1 

                    
⎛ − ⎞
⎜ SS SS ⎟ 
⎜ k −1 ⎟ 

c p 

⎝ ⎠F = 
SS p 

k 

− 2k∑ i 

∑( )2 ∑( )( ) ∑( )2 

n
i=1 

k 

 ∑ni − 2k , r
i=1 

k k k 

with the numerator and denominator degrees of freedom of k-1 and espectively. 

If we reject the null hypothesis H 0 , it means k regressions do not have similar slopes.  Next, we 

can test k groups of (k-1) regression lines. If k-1=2, then we can apply the method in Section 3.1. 
If we cannot reject the null hypothesis, we conclude that all population slopes underlying our k 
samples of data are equal.  In this situation, it is reasonable to ask whether all k population 
regression lines are identical.  

To test the null hypothesis of equality of intercepts, we combine the data from all k samples, and 
compute a residual sum of squares, SSt . The null hypothesis is tested with the test statistic  

SS SS                                ⎛ − ⎞
⎜ ⎟ 

k −1⎜
t c 

⎟
⎝ ⎠F = 

SS c 
k 

∑n − k −1
i 

i =1 

k 

∑ni − k −1 
i=1 

with k-1 and degrees of freedom.  

If the null hypothesis is rejected, we can employ multiple comparisons to determine the location 
of significant differences among the elevations.  If it is not rejected, then all k sample regression 
lines are an approximation of the same population regression line, and the best estimate of 
underlying population regression is given by the Lemma. 

In the modified cut-off sample design, we plan to test the relationships of up to four different 
government types within the state.  If we cannot reject all hypotheses, we will combine some 
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government types to have a better estimator with a lower variation for the purpose of improving 
the precision of estimators. 

3.3 Decision-Based Method 

The decision-based method first combines the data from different strata by the sample design 
through the hypothesis test of the equality of the model coefficients, and then applies the model-
assisted method to estimate the annual survey totals and their related variances. When we apply 
the decision-based method for the Public Employment Survey (PES), we have the following 
specific steps: 1) apply a simple linear regression model for each stratum based on our new two-
stage sampling method; 2) perform a hypothesis test on small versus large government units, and 
determine whether we can combine or keep the two strata separate; 3) perform a hypothesis test 
on different government types for any given state; 4) fit a simple linear model for the new defined 
data group; and 5) apply the model-assisted method to compute the survey totals and their CVs. 
In the next section, we will demonstrate some numerical results from applying the decision-based 
method. 

4. Numerical Results 

Based on the 2002 Census of Government Employment, Alabama, California, Pennsylvania, and 
Wisconsin were ranked as the twenty-eighth, fourth, second, and eleventh, respectively, among 
the states with respect to the number of local governments.  Table 3 summarizes the overall 
frame by government type for those states.  

Table 3: Government Organization for Studied States in 2002 
Source: U.S. Census Bureau, 2002 Census of Government Organization  
 Type of Government  
State Counties (1) Cities and Special School Subtotal 

Townships (3) Districts (4) Districts (5)  
Alabama 67 458 529 131 1,185 
California 57 478 2,765  1,044 4,344 
Pennsylvania 66 2,562 1,728 515 4,871 
Wisconsin 72 1,851 756 441 3,120 
Subtotal 262 5,349 5,778 2,131 13,520 

Our modified two-stage cut-off sample design is equivalent to a stratified sampling with four to 
six strata for each state.  In Alabama, we have five strata: county (labeled as 1), small sub-county 
(labeled as 31), large sub-county (labeled as 32), special district (labeled as 4), and school district 
(labeled as 5). In California, we also have five strata: county (labeled as 1), sub-county (labeled 
as 3), small special district (labeled as 41), large special district (labeled as 42), and school 
district (labeled as 5). For Pennsylvania and Wisconsin, we have six strata each: county (labeled 
as 1), small sub-county (labeled as 31), large sub-county (labeled as 32), small special district 
(labeled as 41), large special district (labeled as 42), and school district (labeled as 5).  

The first step of our decision-based approach estimation procedure is to test small sub-counties 
(31) versus large sub-counties (32) in Alabama, Pennsylvania, and Wisconsin as well as to test 
small special districts (41) versus large special districts (42) in California, Pennsylvania, and 
Wisconsin regarding variables: full-time employment, full-time payroll, part-time employment, 
and part-time payroll.  Applying the method described in Section 3.1, we reject the null 
hypothesis for full-time employment in California’s small special districts as compared with large 
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special districts.  For Wisconsin, we reject all null hypotheses except from the part-time 
employment in special districts.  We cannot reject any other categories of small government units 
and large government units. Thus, we combine these sample data from small government units 
and large government units together for a better estimate.  

Table 4: 	Combine strata based on the results of hypothesis tests of equality of the model 
coefficient 

Full-Time 
Employment 

Full-Time 
Payroll 

Part-Time 
Employment 

Part-Time 
Payroll 

Alabama (1,3,4), (5) (1,3,4,5) (1,3,4), (5) (1,3,4), (5) 
California (1,3,5), (40), (41) (1,3,4, 5) (1), (3,4,5) (1), (3,4,5) 
Pennsylvania (1), (3,4,5) (1,5), (3,4) (1), (3,4), (5) (1), (3,4,5) 
Wisconsin (1), (30), (31), 

(40), (41), (5) 
(1,5), (30), (31), 

(40), (41) 
(1,4), (30), 

(31), (5) 
(1,5), (30), 

(31), (40), (41) 

If we cannot combine the small and large government units in the category of sub-county or 
special district, then we only test three government types: county, special district and school 
district or county, sub-county and school district. Otherwise, we will test four government types: 
county, sub-county, special district, and school district. After a series of tests, we conclude the 
following: 1) we should combine all data for full-time payroll in Alabama and California; 2) for 
full-time employment, part-time employment, and part-time payroll in Alabama, we should 
combine data from county, city and township, and special district. Thus, we will fit two separate 
regression lines; 3) for full-time employment and part-time payroll in Alabama, and for part-time 
employment and part-time payroll in California, we should combine data from cities and 

Figure 1: Linear fits for small and large special districts in California regarding full-time 
payroll versus linear fit for data combining small and large special district 
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townships, special districts, and school districts. Thus, we will fit two separate regression lines; 
and 4) for full-time payroll and part-time payroll in Wisconsin, we are only able to combine data 
from counties and school districts. Therefore, we have five different regression lines.  

Table 4 displays all possible combinations from the null hypothesis, which test the equality of the 
model coefficient.  Symbol (1,3,4) means that we can group data from counties, cities and 
townships, and special districts, and then fit one simple linear model. Symbol (5) means that we 
can model by data from school districts without the other government types. For Alabama, 
California, and Pennsylvania, we are able to combine data from different government types. But 
for Wisconsin, we can’t combine data in the different categories except combining data from 
counties and school districts for full-time payroll and part-time payroll, and combining data from 
counties and special districts for part-time employment.     

Figure 1 displays how the decision-based approach works on small government units as 
compared with large government units. We use full-time payroll in California as an example. 
Two solid straight lines are linear regression fits for small and large special districts.  They are 
not the same, but have very similar slopes and a small difference between two intercepts.  Since 
we cannot reject the null hypothesis of testing equality of the model coefficients and claim model 
coefficients are significantly different, we combine the small and large government units to 
reduce model error when we apply the model fit for combining data for separate stratum models. 
The dotted line is the best linear fit for combining data.  

Figure 2: Linear fit for individual government type vs. linear fit for data combining all  
government types   
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Table 5: CV comparison among H-T, model-assisted, and decision-based 
 
 
 
 
 
 
 
 

H-T Model AssistedDecision Based 

Alabama 

ft_emp 1.971% 0.158% 0.136% 
ft_pay 1.898% 0.159% 0.070% 
pt_emp 4.628% 0.564% 0.531% 
pt_pay 2.839% 0.385% 0.363% 

California  
 

ft_emp 0.675% 0.069% 0.022% 
ft_pay 0.484% 0.086% 0.035% 
pt_emp 1.966% 0.102% 0.088% 
pt_pay 1.420% 0.140% 0.129% 

 
 
 Pennsylvania 
 
 

ft_emp 1.963% 0.111% 0.087% 
ft_pay 1.655% 0.101% 0.082% 
pt_emp 8.690% 0.179% 0.172% 
pt_pay 8.528% 0.281% 0.163% 

 
 

Wisconsin  
 
 
 

ft_emp 1.762% 0.096% 0.096% 
ft_pay 1.065% 0.100% 0.077% 
pt_emp 15.045% 0.220% 0.215% 
pt_pay 6.014% 0.301% 0.233% 

Again, we use full-time payment in California as an example to demonstrate how the hypothesis 
tests of equality work among the four different government types. In Figure 2, the solid line is 
the best linear fit for each individual government type, and the dotted line is the best linear fit for 
data combining all government types.  We can see from Figure 2 that the difference between two 
straight lines for different types of government is very small, and for the county government that 
are almost identical.   

Finally, we compare the Coefficients of Variation (CV) among the H-T estimator, the model-
assisted estimator, and our proposed decision-based estimator. We calculated the CV for full-time 
employment, full-time payroll, part-time employment, and part-time payroll in the states of 
Alabama, California, Pennsylvania, and Wisconsin. 

Table 5 displays the CV comparison for three estimation methods among four variables of 
interest and four states. All CVs from the H-T method are less than 2 percent for full-time 
variables. Some CVs are pretty large for part-time variables, especially for Pennsylvania and 
Wisconsin. All CVs from the model-assisted approach are significantly improved over the H-T 
method. Only one CV is more than 0.5 percent for part-time employment in Alabama.  Most of 
the CVs are less than 0.2 percent.  All CVs in the decision-based approach are less than those 
from the model-assisted approach. In most cases, it seems that the improvement is small.  For 
example, the CV for the part-time employment estimate in Wisconsin is 0.220 percent when 
applying the model-assisted method as compared with 0.215 percent when applying the decision-
based method. However, we see some significant changes between the model-assisted and 
decision-based approaches. For example, CVs for the full-time payroll estimates in Alabama and 
California, or full-time employment estimates in California, have improved by more than 50 
percent. They are from 0.159 percent, 0.086 percent, and 0.069 percent down to 0.070 percent, 
0.035 percent, and 0.022 percent, respectively. 
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5. Future Plans 

In the future, we will plan to investigate more complicated models instead of simple linear 
regression models by exploring more variables such as population size which may affect 
variables of interest in: full-time employment, full-time payroll, part-time employment, and part-
time payroll. We can even explore some nonlinear models or nonlinear estimators.    

Secondly, we will also address the accuracy of the variance estimator in the decision-based 
approach. A simple standard variance formula may not be suited for our complicated survey 
design.  Plus, there are many variations attributable to data collection such as missing data or 
nonresponse error.  We are exploring a variance estimator based on the concept of replication 
methods such as random groups, balanced half-samples, and jackknife. A bias study should be 
conducted as well. 

Finally, we need to consider a data simulation study to quantify variance due to the decision 
(group merging) process. The keys for a decision-based estimation are to group data in different 
categories through testing a series of hypotheses of equality of model coefficients.  We plan to 
study whether the variation exists during these hypothesis tests and how much the variance 
increases.       
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