Supporting Statement A for:

A multi-center international hospital-based case-control study of lymphoma in Asia (AsiaLymph) (NCI)

OMB No. 0925-0654, Expiration Date 9/30/2012

Yellow highlights indicated changes to submission from prior approval.

August 31, 2012

Submitted by:

Occupational and Environmental Epidemiology Branch Epidemiology and Biostatistics Program Division of Cancer Epidemiology and Genetics (DCEG) National Cancer Institute National Institutes of Health Rockville, Maryland 20852

Contact Person: Nathaniel Rothman, M.D., M.P.H., M.H.S. NCI Project Officer Executive Plaza South, Room 8118 NCI/NIH EPS 8116 Bethesda, MD 20892

> Phone: 301-496-9093 FAX: (301) 402-1819 e-mail: rothmann@mail.nih.gov

TABLE OF CONTENTS

A. JUSTIFICATION

A.1	Circumstances Making the Collection of Information Necessary1
A.2	Purpose and Use of the Information Collection4
A.3	Use of Improved Information Technology and Burden Reduction6
A.4	Efforts to Identify Duplication and Use of Similar Information6
A.5	Impact on Small Businesses or Other Small Entities7
A.6	Consequences of Collecting the Information Less Frequently7
A.7	Special Circumstances Relating to the Guidelines of 5 CFR 1320.57
A.8	Comments in Response to the Federal Register Notice and Efforts to Consult Outside the Agency7
A.9	Explanation of Any Payment or Gift to Respondents7
A.10	Assurance of Confidentiality Provided to Respondents8
A.11	Justification for Sensitive Questions9
A.12	Estimates of Burden Hours and Costs9
A.13	Estimates of Other Total Annual Cost Burden to Respondents and Record Keepers12
A.14	Annualized Cost to the Federal Government12
A.15	Explanation for Program Changes or Adjustments13
A.16	Plans for Tabulation and Publication and Project Time Schedule13
A.17	Reason(s) Display of OMB Expiration Date is Inappropriate16
A.18	Exceptions to Certification for Paperwork Reduction Act Submissions16

LIST OF ATTACHMENTS

Attachment 1. Protocol including bibliography

Attachment 2. List of Consultants

Attachments 3. Instruments

- 3A. Screener and Core Questionnaire-Hong Kong (English)
- 3B. Screener and Core Questionnaire-Hong Kong (Chinese)
- 3C. Screener and Core Questionnaire-Chengdu (English)
- 3D. Screener and Core Questionnaire-Chengdu (Chinese)
- 3E. Screener and Core Questionnaire-Taiwan (English)
- 3F. Screener and Core Questionnaire-Taiwan (Chinese)
- **3G.** Screener and Core Questionnaire-Tianjin (English)
- 3H. Screener and Core Questionnaire-Taiwan (Chinese)
- Attachment 4. Occupational Job Exposure Modules examples
- Attachment 5. Occupational Job Exposure Modules complete set

Attachments 6A to 6E. Institutional Review Board (IRB) Approvals

- 6A: National Cancer Institute Special Studies and NIH IRB review
- 6B: Hong Kong University Study Coordinating Center and Coordinating Center for Hong Kong IRB review
- 6C1: Sichuan University Huaxi Hospital Study Coordinating Center for Chengdu IRB review in original language;
- 6C2: Sichuan University Huaxi Hospital Study Coordinating Center for Chengdu IRB review in English language;
- 6D1: Tianjin Medical University Cancer Institute and Hospital Study Coordinating Center for Tianjin IRB review in original language;
- 6D2: Tianjin Medical University Cancer Institute and Hospital Study Coordinating Center for Tianjin IRB review in English language;
- 6E1: Dalin Tsu-Chi General Hospital Study Coordinating Center for Taiwan IRB review in original language.
- 6E2: Dalin Tsu-Chi General Hospital Study Coordinating Center for Taiwan IRB Review in English language.

Attachment 7. Subject Contact and Consent Form

Attachment 8. Administrative form for the Pathologist

8/31/2012

Attachment 9. Administrative forms for the Interviewer

Attachment 10. AsiaLymph Study Organization

This is a request for an extension of the "AsiaLymph Study" which includes non-substantive changes to the questionnaire but no changes to burden requested, scope or methodology of the study. The project focuses on collecting critically needed information to understand and reduce the cancer burden from lymphoid malignancies in the Asian population, the incidence of which has risen in recent decades. Specifically, environmental exposures to industrial emissions, genetic susceptibility, viral exposures, early life exposures, ultraviolet (UV) radiation exposures, and other risk factors for lymphoma overall and specifically for populations in Asia will continue to be examined.

A. JUSTIFICATION

A.1 <u>Circumstances Making the Collection of Information Necessary</u>

Under Section 411 of the Public Health Service Act (42 USC § 285a), the Division of Cancer Epidemiology and Genetics (DCEG) of the National Cancer Institute (NCI) is authorized to collect information to generate and test hypotheses concerning environmental and host determinants of cancer. The mission of the DCEG is to conduct "multidisciplinary research to discover the genetic and environmental determinants of cancer and new approaches to cancer prevention. The Division's research impacts public health policy in the United States and around the world." More specifically, the mission of the Occupational and Environmental Epidemiology Branch is to "conduct studies in the United States and abroad to identify and evaluate environmental and workplace exposures that may be associated with cancer risk." The AsiaLymph study continues to test hypotheses regarding the association of specific environmental, occupational, viral, and other exposures and lymphoid malignancies.

Incidence rates of certain lymphomas have increased in the United States and in many other parts of the world. The contribution of environmental, occupational, and genetic factors to the cause of lymphoma has generated a series of novel findings from epidemiological studies conducted in the United States that have attempted to explain this increase. However, none of the chemical associations have been conclusively established and the identification of the key,

functional alleles in gene regions associated with risk of NHL requires further elucidation. Further, the ability to follow-up, confirm, and extend these observations in the United States is limited by the low prevalence and limited range of several important chemical and viral exposures and the high to complete linkage disequilibrium among key candidate genetic loci in Western populations. To optimize the ability to build on and clarify these findings, it is necessary to investigate populations that differ from those in the West in both exposure patterns and underlying genetic structure. A multidisciplinary case-control study of lymphoma in Asia, where lymphoma rates have also risen, provides an opportunity to replicate and extend recent and novel observations made in studies in the West in a population that is distinctly different with regard to patterns of key risk factors, including range of exposures, prevalence of exposures, correlations between exposures, and variation in gene regions of particular interest. It will also improve the ability to understand the causes of certain types of rare lymphoma tumors in the United States that occur at much higher rates in Asia. As such, AsiaLymph study will confirm and extend previous findings and yield novel insights into the causes of lymphoma in both Asia and in the United States.

Research suggests that organochlorines (OCs), trichloroethylene (TCE), and benzene may be associated with risk of lymphoma and that benzene and TCE have immunotoxic properties (Stewart 2009; Lan et al. 2004; Lan 2009), that genetic variation in certain loci involved in immunologic regulation (e.g., *TNF/LTA*, *IL10*, and *IL4*) may contribute to risk of lymphoma, and that interactions between these chemicals and genes may exist (Lan et al. 2004; Colt et al. 2009; Wang et al. 2007). However, none of these chemical or genetic associations have been conclusively established, and the underlying biologic plausibility, including identification of critical functional alleles in genetic studies, requires further elucidation. At the

same time, there is a growing appreciation of the critical need for high quality pathology review in etiologic studies of lymphoma, as evidence is increasing that some risk factors may be highly specific to one or more subtypes of lymphoma and therefore the subtypes need to be very accurately characterized (Morton et al. 2008).

Lymphoma in Asia

Although NHL rates historically have been lower in Asia than in the West, there is evidence that rates have been rising in recent decades in Asia from some of the best cancer registries in this region located in Shanghai and Singapore (Jin et al. 1999; Chia et al. 2001). For example, in Shanghai between 1972-3 and 1993-4, NHL rates rose 33% in males and 66% in females, while there was a small drop in incidence rates for leukemia in both sexes. Overall, there was an 11% and 13% decline in the incidence rates of all cancers for males and females, respectively, during this time period (Jin et al. 1999). The distribution of NHL histologic subtypes also differs in Asians and Caucasians. Although diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype in both Asians and Caucasians, rates of follicular lymphoma are substantially lower in Asians, whereas rates of T-cell lymphomas, particularly nasal type Natural Killer T (NK/T) cell lymphomas, are substantially higher in Asians (Au and Lo 2005; Ng et al. 1986; Gross et al. 2008; Kadin et al. 1983). As a consequence, this study provides a unique opportunity to replicate and extend key findings observed in Caucasians for histologies with characteristics shared by both populations as well as to rigorously study the epidemiology of those tumors that appear to be more common in Asia than in Western populations. See the protocol for a complete discussion of the background and rationale to study environmental exposures to industrial emissions, genetic susceptibility, viral

exposures, early life exposures, ultraviolet (UV) radiation exposures, and other risk factors for lymphoma overall and specifically for populations in Asia (**Attachment 1**).

A multidisciplinary case-control study of lymphoma in Asia is timely because it provides an opportunity to replicate and extend recent and novel observations made in studies among Caucasians in a population that is distinctly different with regard to patterns of key risk factors. Refer to **Attachment 1** (p. 3-10) for a complete discussion of background, rationale and references. This study involves some of the leading lymphoma clinicians and pathologists in Asia and represents the culmination of a seven year effort to launch (**Attachment 2**). This study represents an opportunity to learn about the etiology of this important tumor in one of the largest populations in the world and to confirm many leads identified from previous studies conducted in the United States and elsewhere in the West.

A.2 <u>Purpose and Use of the Information</u>

The purpose of the study is to evaluate the etiology of lymphoma in Asia. The main focus of the study is on chemical exposures, viral exposures, and genetic susceptibility, with central pathology review to characterize effects by histologic subtype. Specific study goals are as follows:

- Investigate the role of environmental exposure to organochlorines and occupational exposure to trichloroethylene, benzene, and other chemical solvents as well as to other potential occupational exposures;
- Investigate the role of family history, high-prior candidate genetic variants (e.g., *TNF/LTA* locus) and emerging findings from genome-wide association studies of lymphoma in Caucasians, and use state-of-the-art genomics to study genetic variants that may be unique to risk of lymphoma in Asia;
- Investigate the etiologic role of Epstein Bar (EBV), Hepatitis B (HBV) and Hepatitis C (HCV) viruses; evaluate potential novel viral agents in T-cell lymphoma; carry out studies to understand pathogenetic mechanisms of Natural Killer T (NK/T) cell lymphoma;

- Study other potential determinants of lymphoma including early childhood exposures including crowding and animal exposures, medical conditions, ultraviolet radiation exposure, and other lifestyle factors;
- 5) Determine the influence of risk factors for lymphoma overall and by histologic subtype determined by central pathology review.

The study methods include a screener and core questionnaire that are administered by trained interviewers. There are four Chinese-version questionnaires that are used at the different study centers: Hong Kong, Chengdu, Tianjin, and Taiwan between the four centers where the study is occurring. The differences in the four Chinese questionnaires include slight differences in the phrasing of a few questions, reflecting local and regional language usage. For a copy of the Chinese version of the screener and core questionnaire used in the different area see **Attachments 3B, 3D, 3F and 3H.** English versions of the questionnaires (**Attachments 3A, 3C, 3E and 3G**) are included for reference purposes only. The content and information being collected is the same and the amount of time required to administer the questionnaire is the same as in the previous request to OMB.

In addition, depending upon the occupational history obtained, the computer-assisted personal interview (CAPI) brings up one or more occupational assessment modules which consist of questions that are targeted to capture additional information regarding chemical exposures (**Attachments 4 and 5**). A blood and buccal cell sample are collected from each subject to measure chemical and viral exposures and genetic factors. Samples of tumor tissue are collected from pathology blocks from cases after clinical diagnostic tests are completed and used for confirmatory tests, viral studies, and molecular diagnostic tests to be conducted by the study pathology center.

The study is the largest molecular epidemiology study of lymphoma ever carried out

anywhere in the world and the results and information from this study will be used in a number

of different ways including to:

- Contribute substantial scientific contributions to the literature concerning the etiology of lymphoma in Asia and world-wide focusing on the risk factors being studied;
- Confirm previous occupational, environmental, viral, genetic and other hypotheses identified in epidemiologic studies conducted among in the West;
- Assist senior leadership of DCEG to determine how best to allocate resources to study lymphoma in the future and;
- Contribute to a better understanding of the etiology of lymphoma world-wide and thus may eventually help to understand the reason for the increase in the incidence of this cancer in Asia and elsewhere and identify approaches that can be used for its prevention.

A.3 Use of Improved Information Technology and Burden Reduction

AsiaLymph employs cutting edge methodologies to efficiently collect detailed

information about occupational exposures using a new software tool (OccIDEAS) that is integrated into the computer assisted personal interview (CAPI), which has never been used in a previous study of lymphoma. Further, each interviewer uses a touch-tablet (Lenovo X 220) to administer the questionnaire.

After consultation with the NCI Privacy Act Coordinator it was determined that a Privacy Impact Assessment (PIA) is needed. Based on the coordinator's recommendation, a PIA has been undertaken and is currently in at the NCI level.

A.4 Efforts to Identify Duplication and Use of Similar Information

There are no other sources of similar information that have been collected that yield the same results as this effort in Asia. First, almost every epidemiologic study of lymphoma has been conducted among primarily Caucasians in Western countries and no large scale multicenter study of lymphoma has ever been conducted in Asia. Secondly, no large-scale epidemiologic study of lymphoma in any population has ever conducted central immunophenotyping and pathology review, which is critical to understand risk factors for specific subtypes of lymphoma. Third, this is the largest multidisciplinary study of lymphoma ever conducted anywhere in the world. As such, it will have better statistical power than any previous study to evaluate risk factors for histological subtypes, all collected and characterized using the same uniform methods.

A.5 Impact on Small Businesses or Other Small Entities

There is no impact on small businesses or other small entities.

A.6 <u>Consequences of Collecting the Information Less Frequently</u>

Patients are asked to participate once for the interview and biological specimen collection.

A.7 Special Circumstances Relating to the Guidelines of 5 CFR 1320.5

The study fully complies with the Guidelines.

A.8 <u>Comments in Response to the Federal Register Notice and Efforts to Consult</u> <u>Outside the Agency</u>

A 60-day Federal Register was published on February 24, 2012 (77 FR 11136) soliciting additional comments from the public. There was one public comment that was not relevant to the scope, methodology, or burden of the study. The program staff submitted a response to the public comment.

Many people were consulted on all aspects of this study including previously existing information, identification of study centers and hospitals, study design, and study methods over the last three years. This includes some of the world's leading lymphoma pathologists, clinicians, and epidemiologists, and occupational and environmental exposure assessment experts. These individuals are located in the United States, Europe, Australia, and Asia

(Attachment 2). All issues were successfully resolved through these consultations.

A.9 Explanation of Any Payment or Gift to Respondent

Study subjects will receive \$22.50 to participate for their time, effort, and invasive nature of the biological sample. The dollar amount was arrived at after consultation with clinicians and epidemiologists at each of the four study centers and the Queen Elizabeth hospital and considered a reasonable amount that is needed in order to obtain high participation rates. This amount of remuneration has been approved by the NCI Special Studies Institutional Review Board (SSIRB) and the NIH IRB (**Attachment 6A**).

A.10 Assurance of Confidentiality Provided to Respondents

Procedures have been developed to protect the security of all information collected from study subjects and approved by the NCI SSIRB and NIH IRB (**Attachment 6A**). All files sent from interviewers to the study coordinating center (Hong Kong University School of Public Health) by internet are fully encrypted. All original questionnaire responses and other study documents with personal identifiers are kept securely at the study coordinating center. All scanned medical records have the subject name blocked out before scanning and be identified by only a subject ID number. All biological samples are identified only by a subject ID and not have any personal identifiers, and these samples when sent from the NCI biorepository to laboratories for analysis are characterized by identifier numbers only. Biological sample analytic results are sent to for addition to the study database. All personal identifiers are stripped from data analysis files prepared by the study coordinating center for study investigators. Finally, no individual results are presented in publications or other reports. See **Attachment 1** for additional details.

The study and its informed consent forms (**Attachment 7**) were approved by the NCI SSIRB and NIH IRB on July 5, 2011 (**Attachment 6A**); the IRB at Hong Kong University on

November 1, 2011 (**Attachment 6B**), which is the overall study coordinating center and the study center for Hong Kong; Sichuan University Huaxi (West China) Hospital on December 9, 2011 (**Attachment 6C1,2**), which is the coordinating center for Chengdu; Tianjin Medical University Cancer Institute and Hospital on November 24, 2011(**Attachment 6D1,2**), which is the coordinating center and Hospital on February 20, 2012 (**Attachment 6E1,2**), which is the coordinating center for Taiwan.

The Privacy Act does not apply to an international population.

A.11 Justification for Sensitive Questions

Personally identifiable information (PII) are collected. Most questions asked in the study questionnaire (**Attachment 1**) are typically not considered sensitive. Some questions, such as those about alcohol consumption, medical history, family history, reproductive health, and family income may seem sensitive to some respondents. However, these are important factors to evaluate as possible confounders and are known or suspected risk factors in and of themselves for lymphoma and represent questions that are common to health studies. National ID numbers are important to collect since they are often used as a way of identifying patients and their medical records in hospital databases and are unique. Respondents are informed that their responses are kept secure and they have the right to skip any questions even if they consent to the interview as a whole (**Attachment 7**).

A.12 Estimates of Annualized Burden Hours and Costs

It is conservatively estimated that 3,100 patients will be screened to gain 2,200 patients per year for participation in the study. Controls are drawn from patients seen at the same hospital for diseases/conditions that are unlikely to be associated with risk factors under study,

such as injuries and selected diseases of the circulatory, digestive, genitourinary, and central nervous system (**Attachment 1**). The category of respondents is considered "Individuals."

The estimated average time for a patient to complete the screener and core questionnaire (75 minutes), the patient-specific computer-triggered occupational exposure assessment modules (15 minutes), and to collect the biospecimens (15 minutes) is estimated to be no more than one hour and 45 minutes (105 minutes) (**Attachments 3, 4, and 5**). Based on previous experience in other studies that use patient-specific computer-triggered occupational job modules, about 50% of the study subjects will not have any job module asked and the remaining 50% will have 1-3 job modules asked, and the overall estimated time burden is an average of 15 minutes. The time estimates for the core questionnaire and occupational job modules are based on pilot testing of 9 people as well as previous experience with similar questionnaires.

In addition to the patients, the study interviewers and the hospital pathologists complete administrative forms related to the collection of the biospecimens (**Attachment 8 and 9**). The 19 pathologists fill out the form in Attachment 8 for 1100 cases, for an average of 58 forms per pathologist. The 19 interviewers fill out the forms in Attachment 9 for 2200 subjects (1100 cases and 1100 control patients) for an average of 116 set of forms per interviewer.

The annual burden for the respondents, the pathologists, and the interviewers is estimated to be 5,302 hours which amount to a total of 15,906 hours over a three-year data collection period (Table A.12-1).

Table A.12-1. Estimates of Annual Burden Hours					
Types of Respondents	Instrument	Number of Respondents	Frequency of Response	Time per Response (Hours)	Annual Burden Hours
Potential Study Subjects	Screening Questions (Attachments 3A to <mark>3H</mark>)	3,100	1	5/60	258
Consented Patients with Lymphoma	Core Questionnaire & Occupational Job Module (Attachments 3A to <mark>3H</mark> , 4 and 5)	1,100	1	105/60	1,925
Consented Patient Controls	Core Questionnaire & Occupational Job Module (Attachments 3A to <mark>3H</mark> , 4 and 5)	1,100	1	105/60	1,925
Study Pathologists	Pathology sample request and tracking form (Attachment 8)	19	58	5/60	92
Interviewers	Tracking forms (Attachment 9)	19	116	30/60	1,102
Total					5,302

Based on a median hourly wage rate of \$10 for study subjects, \$40 for pathologists, and

\$7 for interviewers, the annualized average cost is \$52,474 which amounts to \$157,422 over a

three-year period (Table A.12-2).

Table A.12-2. Annualized Cost to Respondents				
Type of Respondent	Instrument	Annual Burden Hours	Hourly Wage Rate	Respondent Cost
Potential Study Subjects	Screening Questions	258	\$10.00	\$2,580.00
Consented Patients with lymphoma	Core Questionnaire & Occupational Job Module	1,925	\$10.00	\$19,250.00
Consented Patient Controls	Consented Patient Controls Core Questionnaire & Occupational Job Module		\$10.00	\$19,250.00
Study Pathologists Pathology sample form		92	\$40.00	\$3,680.00
Interviewers Tracking forms		1,102	\$7.00	\$7,714.00

Total		5,302		\$52,474.00
-------	--	-------	--	-------------

A.13 Estimates of Other Total Annual Cost Burden to Respondents and Record Keepers

There are no direct costs to the patients, pathologists or interviewers other than their time to participate in the study.

A.14 Annualized Costs to the Federal Government

This includes contractor costs, NCI staff time, and biological collection, biological transport, biological sample analysis and data analysis. This comes out to an annualized cost of is \$909,200. The total costs to the Federal Government over the five-year period of data collection and analysis are estimated to be \$4,546,000 (see Table A.14-1).

Table A.14-1. Annual Cost to the Federal Government			
	5 YEAR TOTAL	ANNUAL AVERAGE	
Contractor Costs	\$2,400,000	\$480,000	
NCI Personnel Subtotal	\$435,000	\$87,000	
Biologic sample collection and processing, and data analysis	\$855,000	\$171,000	
Purchase of Computers for Interviewing and Data Management	\$45,000	\$9,000	
Pathology Reagents	\$495,000	\$99,000	
Travel Costs for NCI Staff for Study Management and Development	\$316,000	\$63,200	
Total	\$4,546,000	\$909,200	

A.15 Explanation for Program Changes and Adjustments

This is a request for an extension since these are non-substantive changes to the screener and core questionnaire **(Attachments 3A to 3H)** based on the results of the pilot testing. These changes serve to clarify existing questions and one question has been added to confirm that the respondent has not been previously enrolled in the study. The revisions do not affect the burden hours required to complete the screener and/or questionnaire, nor does it represent any changes in scope or methodology.

A.16 Plans for Tabulation and Publication and Project Time Schedule

Full-scale data collection, cleaning and analyses are followed by publication in peerreviewed, scientific journals. Our project time schedule is given in Table A.16-1.

TABLE A.16-1. PROJECT SCHEDULE FOR PHASE III			
Component	Time after OMB approval		
Data collection	1 day to 36 months after approval		
Data editing	1 week to 40 months after approval		
Data analysis	40 to 60 months after approval		
Publication	42 to 60 months after approval		

Since lymphoma comprises a group of related yet heterogeneous diseases, each characterized by the malignant transformation of lymphoid cells but with distinctive morphologic, immunophenotypic, genetic, and clinical features, we will analyze risks by lymphoma subtype as well as larger subgroups. For analyses by subtype, odds ratios (ORs) and 95% confidence intervals (CIs) are derived for each risk factor from polytomous unconditional logistic regression models adjusting for matching variables. P values for the linear trend will be computed for continuous variables and using ordinal variables. To evaluate heterogeneity among lymphoma subtypes, we will use 2 statistical approaches. First, we will conduct a homogeneity test in the polytomous model, testing the null hypothesis that the regression coefficient for each risk factor was the same for all subtypes. Values of P less than .05 will be considered to provide evidence of heterogeneity. The test for homogeneity has the greatest power to detect risk differences when the risks for the subtypes all vary slightly from one another. Second, we will analyze all possible case-case pairwise comparisons using dichotomous logistic regression models (Morton et al. 2008). We will compute test the null hypothesis that the particular risk factor does not discriminate between the 2 disease groups modeled. To account for the pairwise analysis, we will apply a Bonferroni correction. In contrast to the test for homogeneity, the pairwise analysis has the greatest power to detect risk differences when the risk for one disease group is distinct from the other(s). For risk factors with more than 2 categories, we will use the ordinal variable for the homogeneity test and pairwise analysis. Analyses will also be conducted for larger lymphoma subgroups including NHL and B-cell lymphomas using unconditional logistic regression models in order to utilize all controls, adjusting for the matching factors. Analyses will also be conducted for the entire study population using conditional logistic regression models.

For genetic analyses, standard methods are used to test the effect of each SNP. We will also use a new powerful and flexible subset-based approach to the combined analysis of heterogeneous traits, which is an approach that agnostically explores subsets of the traits to identify the strongest association signal and then evaluates the significance of the detected association using efficient adjustment for multiple correlated tests involved (N. Chatterjee, Chief DCEG Biostatistics Branch, personal communication). Data obtained from the study are analyzed using the STATA and SAS package of statistical programs. Data are cross-classified by age and sex, but analyses by sex-specific groups will also be performed.

Initial analyses are conducted for lifestyle risk factors, occupational exposures, environmental exposures, viral exposures, and genetic main effects. Exploratory geneenvironment interaction analyses will also be conducted. We will also conduct genetic pathway analysis to evaluate whether the set of genes in a well-defined pathway (e.g., Th1/Th2 pathway) are associated with the disease risk. This type of analysis is particularly helpful in situations when the pathway is enriched with multiple SNPs with small effects. All models are adjusted for sex, age, study center, and date of enrollment (the control matching factors) and education. Additional potential confounders are selected based on initial analyses of the study data set and through identification of well-established risk factors in the literature. Essentially the entire study population are comprised of Han Chinese so race-specific analyses will not be conducted. Analyses by sex-specific groups are performed. Adjustments for potential confounding factors will depend upon the exposures under consideration.

Separate questionnaire-based publications will include the relationship between lymphoma and occupational exposure to trichloroethylene, occupational exposure to benzene, occupational exposure to chemical solvents, occupational exposure to formaldehyde, farming, residential proximity to traffic, residential proximity to incinerators, animal exposures, indoor air pollution from heating and cooking, family history, medical conditions, childhood crowding, early childhood exposures, UV exposure, physical activity, alcohol use, tobacco use, selected dietary factors (e.g., green tea, soybean products), hair dye use, reproductive history, and socioeconomic status. As indicated in **Attachment 1**, there is support in the literature for a relationship between each of these types of exposures and lymphoma. Further, descriptive papers on the distribution of lymphoma subtypes will be published. In addition, chemical and molecular laboratory analyses of the collected biological samples including pathology samples

will result in separate publications on the relationship between lymphoma and organochlorine plasma levels, exposure to Hepatitis A, B, and C, Epstein Barr Virus, and genetic susceptibility using cutting-edge technology at the NCI. Additional publications will be produced on potential gene- and viral-chemical interactions.

A.17 Reason(s) Display of OMB Expiration Date is Inappropriate

There are no reasons to preclude display of the OMB expiration date on the questionnaires.

A.18 Exceptions to Certification for Paperwork Reduction Act Submissions

There are no exceptions to the certification statement.