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Appendix G: Non-Response Bias Analysis

Appendix G provides details on addressing any unit or item non-response to the recipient survey.

There are two types of missing data that can arise in a survey, even after repeated attempts to

collect data: (1) unit non-response, and (2) item non-response. Our approach to dealing with each

of these is described below.

Unit Non-Response

Unit non-response occurs when an entire data instrument is not received from a potential

respondent. The expected non-response rates for this evaluation are greater than 10%, hence we

will examine for bias because of unit non-response by first examining the response rates overall,

as well as by year and by relevant subgroups (e.g., cohort year, or by gender and race/ethnicity).

Large differences in the response rates by year and for subgroups could indicate that potential

biases may exist1. For example, if the response rate from women was very low and women were

less likely to belong to the treatment group (since scholarships are given to STEM majors), then

any difference in the outcomes between the treatment and comparison groups could result in a

biased estimate of the effect of the treatment (measured as the difference between the treatment

and the comparison group).

To address unit non-response, we will estimate the probability of a person responding to the

survey both for responding and non-responding individuals, as function of baseline

characteristics that are available for both types of individuals (e.g. cohort year, gender,

race/ethnicity), and create weighting classes for adjusting the weights of responding individuals

to alleviate the bias due to non-response, which is a commonly utilized approach. The following

steps will be taken to accomplish this task.

Step 1: Fit Models

To estimate the probability of a person responding to the survey we will use logistic regression

models, where the response (dependent) variable is a dummy variable that takes the value “1” for

responding individuals and take the value “0” for non-responding individuals. Independent

variables will include the demographic variables available in the S-STEM Monitoring System.

These variables include: gender; race/ethnicity; disability status; type of degree program in

which the recipient was enrolled (Associate’s or Bachelor’s); class year (first year, sophomore,

1 Note that a large non-response rate does not necessarily create bias. For example, if the non-respondents were

similar across the treatment and comparison group, then the difference estimate would not be biased

necessarily; rather, any effect of the program could not be generalized to the non-respondents (i.e. it would

create an external validity problem but not necessarily an internal validity issue).
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etc.); first year S-STEM scholarship was received; grade point average; intended major field of

study; and scholarship amount.

Several models will be fit to identify the set of explanatory variables that have statistically

significant associations with the dependent variable (p<0.20 criterion) after controlling for other

statistically significant control variables. This will be accomplished by using backwards

elimination with forward checking.2 In this method, all of the explanatory variables are entered

as predictors in the logistic regression model. The explanatory variable with the largest non-

significant value is dropped from the subsequent model. This step is repeated until the only

explanatory variables that remain in the model are those that meet the p<0.20 criterion. In the

forward checking step, each of the previously eliminated control variables are checked by adding

each one to the model with only the significant predictors. In this step, each variable has a

chance to get back into the model. The final model that results from this process is used to

calculate individual response propensities.

2 Backwards elimination methods are attractive from the point of view that they are often used and familiar. But
use of this method using the conventional p<0.05 criterion has been criticized from the point of view that the
selection criteria tend to favor covariates with strong relationships to the outcome, but may omit important
confounders (i.e., variables that have a weaker relationship to the outcome, but have a strong relationship to the
predictor variable of interest). Maldonado and Greenland (1993) evaluated a backwards elimination strategy
and a change-in-estimate strategy using simulated data from a Poisson regression model. They found that the p-
value based method performed adequately when the alpha levels were higher than conventional levels (0.20 or
more), and found that the change-in-estimate strategy performed adequately when the cut point was set to 10
percent. However, their data, generated from a Poisson model, and their analysis model, with only a single
covariate in addition to the key exposure variable, are very different than the models anticipated for our current
purpose. Budtz-Jorgensen et al. (2007) compared several covariate selection strategies including backwards
elimination and change-in-estimate. They looked at the backwards elimination strategy with three p-value cut-
off levels, 0.05, 0.10, and 0.20, and, following the recommendation of Maldonado and Greenland (1993) used a
10% criterion for the change-in-estimate method. They found that, although the change-in-estimate strategy did
an adequate job of identifying confounders and keeping them in the model, it sometimes threw out variables
that were correlated with the outcome, but were not confounders. Therefore, this method threw out variables
that, if retained, would have reduced the residual error and reduced the standard error of the exposure
coefficient (thus increasing the power to detect exposure effects – exposure effect is analogous to our key
predictor of interest). Although they found that backwards elimination with a p<0.05 criterion was un-suited for
confounder identification, they found that when the p-value criterion was set to p<0.20, backwards elimination
strategy resulted in a reduction of residual error variance and did not throw out important confounders. They
recommended the backwards elimination strategy with a p<0.20 criterion over the change-in-estimate strategy.

Budtz-Jorgensen, E., Keilding, N., Grandjean, P., Weihe, P.. (2007). Confounder selection in environmental
epidemiology. Assessment of health effects of prenatal mercury exposure. Annals of Epidemiology 17(1); 27-
35.

Maldonado, G., Greenland, S., (1993). Simulation study of confounder-selection strategies. American Journal of
Epidemiology 138(11); 923-936
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Step 2: Use Model Results to Calculate Response Propensities

In Step 2, parameter estimates obtained from the fitted model in step 1 will be used to calculate

the predicted probability that an individual will respond to the survey. The logistic regression

model is represented as:
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where πi is the probability that person i is a responder, given the k explanatory variables in the

final model. The predicted probabilities will be obtained by solving Equation 1 for πi, and

substituting the parameter estimates (i.e., the values of βk) from the fitted model in place of the

parameters. The solution for the predicted probability for person i is given by:
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Each person’s predicted probability of response ( î ) is called their “response propensity”.

Individuals with similar response propensities have similar characteristics (explanatory

variables). In particular, they are similar on the characteristics that are most related to the

probability of response.

Step 3: Group Individuals with Similar Response Propensities into Weighting Classes

In this step, individuals with similar response propensities will be grouped into weighting

classes. Weighting classes will be formed to ensure that all individuals within a class fall within

a narrow range of response propensity scores. The boundaries for the weighting classes will be

determined by creating approximately equal-interval response propensity score groupings.

Step 4: Within Weighting Class, Inflate Weights of Responding Individuals to Sum to Population

Total

The weights of responding individuals within a class will be inflated so that the responding

individuals within the class represent the population of responding and non-responding

individuals within that class. That is, because the non-responders within a given class are

statistically similar to the responders, the weighting procedure increases the degree to which the

responders “represent” the class as a whole.

Within each weighting class, the weights of all individual (both responders and non-responders)

will be summed (since we took a census of applicants each individual has an original weight of

1). Next, the weights of just the responding individuals will be summed. Then, within each

weighting class, new, adjusted weights of responding individuals will be calculated by

multiplying the initial weights by a factor equal to the ratio of the sum of the weights of all
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individuals to the sum of the weights of the responding individual. The adjusted weight for the

ith person in the jth weighting class is represented symbolically by:
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where ijw is the initial sampling weight for the ith person in the jth weighting class, the summation

in the numerator is over all k individuals in the set of responders and non-responders within

weighting class j, the summation in the denominator is over all i individuals in the set of

responders in weighting class j, and there are j = 1,…, n weighting classes. The new, adjusted

sampling weights sum to the population total. This result can be written symbolically as:
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Item non-response

Item non-response refers to one or more specific uncompleted items on an otherwise

completed/returned questionnaire. When the amount of missing data on an individual item is

modest (across all returned surveys), we will calculate statistics on only the non-missing items,

which is equivalent to an assumption that missing data on an item are missing completely at

random. The amount of missing data for each item will be presented in all tables/figures included

in reports.

Where necessary for analyses of differences, we will take distinct approaches to imputing values

depending on whether data are missing for an item used to construct a covariate or predictor

variable, or an outcome variable. For analyses where missing data on covariate or predictor

variables require imputation to prevent having to omit those respondents from the analysis, we

will use a “dummy-variable” method. This method entails (i) creating a dummy variable that

equals “1” if the value of the variable is missing and “0” otherwise, (ii) adding the dummy

variable to the model as a covariate, and (iii) replacing the missing value of the original variable

with any constant, such as zero or the mean for non-missing cases.

If the missing data occurs in an item used to construct an outcome—that is, one of the primary

outcomes of interest that we have specified above (for example, the post-fellowship number of

publications produced with a foreign co-author)—we will impute values if more than 20% of

respondents have missing values. We will use the multiple stochastic regression imputation

approach recommended by Puma et al 2009.3 In this multiple imputation approach, instead of

generating one set of values to replace the missing outcome, we generate multiple sets of

3 Puma, M.J. Olsen, R.B., Bell, S.H., and Price, C. (2009). What to Do When Data Are Missing in Group
Randomized Controlled Trials. U.S. Department of Education, Washington DC. NCEE 20090049 (available at
http://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=NCEE20090049).
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imputed values, for example 10 sets of values. In this procedure, first, predicted values (to

replace the missing values) are generated from an OLS regression that is estimated with data that

is available for all individuals (respondents and non-respondents). Then, to each predicted value,

we add a randomly-selected residual from the OLS regression, to account for the inherent

uncertainty in predicting missing data—this comprises the first set of imputed values. Ten sets of

such predicted outcome values are generated, each by adding a randomly selected set of residuals

from the OLS regression. Next, the difference estimate is calculated using each of the ten

datasets in which missing data were replaced with regression-predicted values with the random

residuals. That is, we calculate ten different estimates of the effect of the program on the

specified outcome; each difference estimate has used one of the ten datasets in which missing

data were replaced with the predicted value plus residual. The final difference estimate (that is,

the estimate of the effect of the program on the outcome) is the mean of the ten individual

estimates. The multiple imputation method is preferred over a single imputation method because

the single imputation tends to understate the true variability in the imputed variable and leads to

underestimated standard errors.


