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1.  Introduction

The NHLBI Healthy Communities Study seeks to assess the associations between characteristics of 
community programs and policies and childhood obesity.  The number of communities included in the 
study design is to be chosen to be within the allocated resources available and to allow valid statistical 
inferences to be made about subtle associations that programs or policies (or their components) have 
with childhood obesity outcomes over time.  The purpose of this section is to describe how study 
power was estimated  over a variety of scenarios. 

Power refers to the probability of correctly rejecting the null hypothesis that the program has zero 
relationship with childhood obesity when the program truly has a non-zero relationship.  Effect size is 
the smallest non-zero association that a program can have with childhood obesity and still be 
considered statistically different from zero.  A study design with high power will tend to reach the 
correct conclusion about program effectiveness more often than a design with low power.  
Furthermore, a study design that detects a small effect size is preferable because this design will be 
able to distinguish subtle levels of associations.

This document describes simulations we conducted to assess the power and effect size of the Healthy 
Communities Study design under a variety of scenarios.  The analysis focused on two outcomes of 
interest: body mass index (BMI) and a binary measure of nutrition (e.g. whether the participant 
consumed sugar-sweetened beverages in the last seven days).  A key goal of the study is to relate the 
outcomes of interest to a score of program/policy implementation at the community level.  Section 2 
describes the statistical models that we used to simulate and analyze the data.  Section 3 describes the 
attributes that we assumed the sampled communities would have, including distributional assumptions 
about the program/policy score.  Section 4 describes the age and gender makeup of the study 
participants in each sampled community.  We describe how we generated the BMI data and nutrition 
data in Sections 5 and 6, respectively.  The results of our analysis are provided in Section 7.
  

2.  Statistical Models

We considered several statistical models for each response.  For BMI, we considered a longitudinal 
model that had the following form

log (Y ijkl )=f (aijkl , β )+β1 x il+δ i+γij+ζ ijk +εijkl (1)

where Y ijkl is the lth BMI measurement from child k attending school j in community i; a ijkl is the age at 
the time of the BMI measurement; f ( aijkl , β ) is a polynomial in the child’s age and represents the raw 
BMI assuming no community program is implemented; x il is the program/policy score at time l in 
community i; δ i is a random community effect (independent of program/policy score); γij is a random 
school effect independent of the community; ζ ijk  is a random child effect independent of the school and



the community; and ε ijkl is a random error independent of child, school, and community.  The random 
effects were drawn from a normal distribution with mean zero and standard deviations of 0.05 for the 
community effect (δ i), 0.05 for the school effect (γij), 0.19 for the child effect (ζ ijk), and 0.019 for the 
random error (ε ijkl¿, with these values established based on prior analyses of longitudinal BMI data.  

We considered a cross-sectional BMI model as well.  The cross-sectional data were generated using 
the following equation:

log (Y ijk )=f ( aijk , β )+ β1 x i+δi+γij+ζ ijk+εijk (2)

where each term has the same meaning as Equation (1) except that the time subscript, l, is removed.  
With the time effect removed, the terms ζ ijk  and ε ijk both represent a random error.  The model used to 
fit the cross-sectional data was therefore

log (Y ijk )= f ( aijk , β )+ β1 x i+δi+γij+ξ ijk (3)

with ξ ijk representing a random error whose variance is the sum of the variance for ζ ijk  and ε ijk.

For the binary nutrition outcome, we assumed a cross-sectional model that had the following form:

logit ( π ijk )=β0+ β1 x i+δi+γij (4)

where π ijk is probability that the binary outcome is present for child k attending school j in community 
i; x i is the program/policy score for community i; δ i is a random community effect (independent of 
program/policy score); and γij is a random school effect independent of the community.  The random 
community and school effects were drawn independently from a normal distribution with mean zero 
and a standard deviation of 0.05, matching the value for the BMI models.  

For all statistical models and both outcomes, the hypothesis under investigation is whether β1 equals 
zero.  Effect size is the smallest value of β1 that provides a specified power.

3.  Modeling Community Attributes

The central hypothesis under investigation explores the association between community programs or 
policies (and how they or their component pieces evolve over time) and BMI or PA/nutrition outcomes
measured on participant children from within those communities.  However, different communities 
could be implementing programs or policies at different levels of intensity at the time the study is 
conducted.  Based on the study research plan, we assumed that program/policy scores would be 
measured on a scale between 0 and 1, where 0 means that the program is not implemented at all and 1 
means that the program is implemented completely at full intensity.  

Since some of the statistical models are longitudinal, we needed to develop a model that explains the 
change in program/policy score over time.  Our simulations allowed for the program/policy scores to 
increase or decrease over time.  The following logistic equation was used to simulate how community 
program/policy intensity scores changes over time:  

logit ( z )=log( z
1−z )={−4+ct if c ≥ 0

4+ct if c<0
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where z is the program/policy score and t  is time in years.  The value of c was randomly selected from 
a normal distribution with a mean of zero and a standard deviation of 1.25.  This distribution allows 
different simulated communities to increase or decrease program/policy scores over time at different 
rates.  The sign of the intercept ensures that two program/policy score curves with equal but opposite 
slopes will reach 0 (for the decreasing program/policy) or 1 (for the increasing program/policy) after 
the same number of years.  

Each community’s position on the program/policy score curve at the time of the baseline measurement 
was randomly selected from a beta distribution.  The beta family of distributions places a probability 
on continuous values between 0 and 1.  The exact shape of a particular beta distribution is determined 
by a combination of two parameters, and many different forms are possible that assign more weight to 
portions of the interval [0, 1].  For purposes of this analysis, we considered two different beta 
distributions: beta(1, 1), and beta(0.5, 2).  A beta(1, 1) distribution is equivalent to a uniform 
distribution that assigns probability equally over the interval [0, 1].  It has a mean of 0.5 and a standard
deviation of 0.29.  A beta(0.5, 2) distribution is even more heavily weighted towards values in the low 
end of the interval.  It has a mean of 0.33 and a standard deviation of 0.24.  Figure 1 depicts the shapes 
of the two beta distributions used in the analysis.
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Figure 1.  Distributions of Baseline Program Intensity

Figures 2a and 2b illustrate different program/policy score timelines using the two different beta 
distributions described above.  Each figure shows 15 randomly sampled curves, and each of the 15 
curves has a different slope and a different initial score.  The timeline in each figure starts ten years 
before the baseline year and ends at the baseline year.  Figure 2a indicates a roughly uniform pattern to
the program/policy scores at the baseline year, as would be expected when the intitial score is sampled 
from a beta(1, 1) distribution.  In Figure 2b, most of the program/policy scores at the baseline year are 
near zero, as would be expected when the intial score is sampled from a beta distribution that is 
skewed to the right.  In both plots, most of the lines have a relatively gradual slope.  Furthermore, 
roughly half of the lines have a positive slope and the other half have a negative slope.  These features 
are to be expected since the slopes were drawn from a normal distribution that is centered at zero.
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Figure 2a.  Sampled Program Timelines Using Beta(1, 1) Distribution for Initial Intensity
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Figure 2b  Sampled Program Timelines Using Beta(0.5, 2) Distribution for Initial Intensity

Once a community’s baseline score was simulated, we determined a baseline time on the score growth 
curve for that community.  This time was used to determine the relative timing of the BMI 
measurements before baseline obtained from the medical record abstraction.  The relative times were 
then used to find the community’s intensity level at the time when the retrospective BMI 
measurements were taken.  

Figure 3 illustrates this concept using BMI measurements from a child in a community with an 
increasing program/policy score curve.  The baseline score is sampled first, and the curve is used to 
determine a baseline time that represents how far along the community has progressed in implementing
the program/policy. This time is denoted by b in Figure 3.  We then calculated the timing of 
measurement recordings relative to the baseline time using the parameters of the study design and a 
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random process for the timing of medical visits (described in more detail in Section 4).  These times 
were then input into the growth curve formulas to obtain a program/policy intensity score level at the 
time the measurement was taken.  For example, suppose the child represented by Figure 3 was found 
to have a medical visit 2.1 years before baseline.  The value on the growth curve at time (b – 2.1) years
would be used to estimate the program/policy intensity score level at the time of the medical visit.
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Figure 3.  Illustration of Using Growth Curves to Estimate Program/Policy Score Levels
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4.  Sampling of Participant Gender and Ages

We conducted power calculations for a design with 264 communities and 9 participants per grades K-8
from each community, yielding a total of 21,384 participants. For the simulation, patterned data were 
generated for each community that matches the required number of children at each grade level.  Every
other grade had 4 males and 5 females, with the grades in between having 5 males and 4 females.  In 
one-half of the communities, this pattern started with 4 males and 5 females in the kindergarten class, 
with the pattern reversed for the other half of the communities. We assumed participants in grades K-5 
would be recruited from an elementary school and participants in grades 6-8 would be recruited from a
middle school. 

For each community, we simulated the number of elementary and middle schools that would agree to 
participate in the study. We assumed two elementary schools from the same community would agree to
participate with a probability of 80%; otherwise, only one elementary school would agree to 
participate.  Similarly, we assumed two middle schools from the same community would agree to 
participate with a probability of 65%; otherwise, only one middle school would agree to participate.  In
simulations where two elementary and/or middle schools were recruited from a community, 
participants were randomly assigned to a school with a probability if 50%.  When only one elementary 
and/or middle school was recruited, we assumed all participants from a grade range came from the 
same school.

The exact age of each child at the time of the in-person measurement was sampled from a range of 
ages that corresponds to each grade.  We assumed that September 1 was the start of the school year, 
June 1 was the end of the school year, and a December 1 was the birthday cutoff for each grade.  Thus,
the youngest child in the class on September 1 would be the grade plus 4.75, and the oldest child in the
class on that day would be the grade plus 5.75 (e.g., 5.75 to 6.75 for first grade, 6.75 to 7.75 for second
grade).  As the visit date to the community varies from September 1 to June 1, so does the range of 
ages.  On June 1, the youngest child in the class would be the grade plus 5.5 and the oldest child would
be the grade plus 6.5 (e.g., 6.5 to 7.5 for first grade, 7.5 to 8.5 for second grade).  Assuming a uniform 
distribution of visit dates between September 1 and June 1, and assuming a uniform distribution of 
ages between the range of possible ages for a given visit date, the distribution of ages in a particular 
grade follow a triangle distribution with a minimum of (grade + 4.75), a maximum of (grade + 6.5), 
and a mode of (grade + 5.625).  Our simulations used this triangle distribution to sample ages for each 
grade. 

Since there are no follow-up visits planned for the current design, the timing of the community visits 
was not accounted for in the simulations.

5.  Constructing BMI Data

The simulations assumed that a BMI measurement would be obtained from each child during the in-
person assessment.  Furthermore, retrospective BMI measurements would be available from medical 
records for 70% of the participants.  

The medical record abstraction data from Wave 1 yielded retrospective BMI trajectories for 65 
different participants.  We examined the 65 BMI trajectories to get an understanding of the number of 
BMI measurements per participant, the spacing between measurements, the timing of the earliest BMI 
measurement, and the timing of the most recent BMI measurement.  Table 1 provides summary 
statistics for these values across all participants regardless of age; it is these summary statistics that are 
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used to inform our power studies.  The summary statistics were calculated across all ages because we 
did not find any statistically significant differences in these values for different ages.  

Table 1. Summary Statistics for the Timing of BMI Measurements

n Mean Std Dev Min Max

Number of BMI measurements 65 5.66 5.00 1.00 23.00

Average spacing between BMI measurements 51 1.19 1.18 0.08 6.08

Years since earliest BMI measurement 65 6.07 3.95 0.47 15.01

Years since most recent BMI measurement 65 1.97 2.11 -0.14 8.82

The summary statistics in the above table were used to parameterize general beta distributions from 
which we sampled the four timing aspects of the BMI measurements.  The shapes of the four 
distributions are depicted in Figure 4.  

Number of Visits

1 23

Mean = 5.66
Standard Deviation = 5

Minimum = 1
Maximum = 23

(A)

Spacing of Visits (years)

0.08 6.08

Mean = 1.19
Standard Deviation = 1.18

Minimum = 0.08
Maximum = 6.08

(B)

Time from First Record (years)

0.47 15.01

Mean = 6.07
Standard Deviation = 3.95

Minimum = 0.47
Maximum = 15.01

(C)

Time from Last Record (years)

-0.14 8.82

Mean = 1.97
Standard Deviation = 2.11

Minimum = -0.14
Maximum = 8.82

(D)

Figure 4.  Distributions Used to Simulate Timing of BMI Measurements: (A) Number of visits 
where both height and weight were measured; (B) Number of years between visits; (C) Number 
of years since earliest BMI record; (D) Number of years since most recent BMI record

Once a set of values for the four timing aspects is sampled, we combined them to form a simulated 
sequence of ages at which a BMI measurement is obtained from the medical records.  The average of 
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these sequences over all of the simulated participants will match the summary statistics from the Wave 
1 data, but individual sequences will vary due to randomness in the simulation.

The simulated medical history along with the age at the time of the HCS in-home visit provided a 
sequence of ages at which the subject’s BMI was measured.  We used these ages, and the child’s 
gender to determine a raw BMI from CDC’s 2000 BMI-for-age percentiles 
(http://www.cdc.gov/growthcharts/html_charts/bmiagerev.htm).  The raw BMI is the BMI that the 
child would have if there were no community programs implemented. 

Each child’s measured BMI was simulated using the statistical models in Section 2.  In that model,
f ( aijkl , β ) represents the raw BMI following the median BMI in the CDC tables.  The community’s 
program/policy score, x il, was determined from the intensity growth curves (illustrated in Figure 3).  
The random child effect (ζ ijk) captures any child-specific deviation from the median BMI in the CDC 
tables.

6.  Constructing Binary Outcomes

Our simulation of binary outcomes was more straightforward than our simulation of BMI 
measurements since the former does not rely on a history of medical visits.  Each child was assumed to
complete a dietary assessment during the in-home visit.  The binary outcome based on that assessment 
was sampled from a Bernoulli distribution.  The probability of a success was determined by the 
statistical model described in Section 2.  The community’s program/policy score, x i, was determined 
from the sampled score at baseline.  

The value of β0 was calculated such that the prevalence of the outcome was equal to 0.5.  The 
prevalence is equal to the unconditional probability of the outcome and involves integrating over the 
distribution of the x i values.  Since two different beta distributions were used for the program/policy 
score, the simulation used two different values of β0: -0.475 for the beta(1, 1) distribution and -0.189 
for the beta(0.5, 2) distribution.

7.  Results

Using the methods described above, we replicated study data 500 times for each baseline intensity 
distribution depicted in Figure 1.  For each replication, we fit the appropriate statistical model to the 
simulated data.  We recorded the point estimate of β1 for each model fit.  Taking the standard deviation
of the 500 point estimates of β1 provided us with an estimate of the true standard error of β1.

Using our estimate of the standard error of β1, we can calculate the combinations of power and effect 
size attainable from the study design.  For a two-sided test, the effect size is determined from the 
following equation:

β1=SE× ( zP+z1−α /2 )

where SE is the standard error estimated from the simulation, P is the power, α  is the significance 
level of the test, and zu is the 100*uth percentile from a standard normal distribution.
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After the data are collected, a researcher may be interested in assessing the relationships between  a 
program and BMI in a particular age group.  There are at least two possible ways of doing this type of 
analysis for a longitudinal model.  One approach would use all data that were measured when a 
subject’s age was within the age group of interest regardless of the subject’s age at the in-person 
assessment, allowing analyses of how community programs/policies (and how they change over time) 
influence child obesity outcomes within specific age groups.  For example, suppose a subject who was 
15 years old at the in-person assessment was found to have medical records containing BMI 
information when she was 4 years old.  Those records could be included in an analysis focusing on the 
3-4 year-old age group.  A second approach would use all data ever measured on an individual whose 
in-person age fell within the age group of interest, enabling specific cohort analyses.  For example, a 
study focusing on 3-4 year-olds would include all data collected on those children that were ages 3 or 4
at the in-person assessment.  Our simulation study addressed both of these research approaches.

Our power calculation results are presented in terms of the percent change in effect size detectable for 
a unit change in program/policy score.  The calculated effect sizes assume 80% power for conducting a
two-sided test of significance at α = 0.05.  For the BMI models, the percent change in effect size is the 
smallest percentage difference in BMI between a community with score 0 and a community with score 
1 that would be considered statistically significant at α = 0.05 and 80% power.  For the binary model, 
the percent change in effect size is the smallest percentage point difference in the proportion of 
children with the outcome between a community with score 0 and a community with score 1 that 
would be considered statistically significant at α = 0.05 and 80% power.
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