Appendix K: Power Calculations

Two-Sample Test of Means

This appendix contains our power calculations to determine the sample sizes needed to detect specified minimum detectable effect sizes (for continuous outcomes) or standardized minimal detectable differences (for dichotomous outcomes). First we present the power calculations for continuous outcomes, followed by the power calculations for dichotomous outcomes.

Let μ_1 denote the population mean in the PIRE group and let μ_2 denote the population mean in the comparison group.

$$H_0: \mu_1 - \mu_2 = 0$$
 vs. $H_A: \mu_1 - \mu_2 \neq 0$

Let \bar{Y}_1 denote the estimated mean in the PIRE group and let \bar{Y}_2 denote the estimated mean in the comparison group. Let n_1 and n_2 be the sample sizes of the PIRE and comparison groups respectively and σ_1^2 and σ_2^2 be the sample variances of the PIRE and comparison groups respectively, after controlling for covariates.

Then $Y_1 - Y_2$ can be used as an estimator for $\mu_1 - \mu_2$;

$$\bar{\mathbf{Y}}_1 - \bar{\mathbf{Y}}_2 \sim \mathbf{N} \left(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \right)$$

The formula that relates effect size, power and sample size is

 $|\mu_1 - \mu_2| = Z_{\alpha/2} \sum_0 + Z_\beta \sum_A i i$; where $\sum_0 i i$ is the variance under the null hypothesis and $\sum_A i i$

is the variance under the alternative hypothesis.

$$|\mu_1 - \mu_2| = Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} + Z_{\beta} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

If we assume that $n_1 = n_2 = \frac{n}{2}$ then

$$|\mu_1 - \mu_2| = \left(Z_{\alpha/2} + Z_{\beta} \right) \sqrt{\frac{2\left(\sigma_1^2 + \sigma_2^2\right)}{n}}$$

$$n = \frac{2\left(\sigma_1^2 + \sigma_2^2\right)\left(Z_{\alpha/} + Z_{\beta}\right)}{\left|\mu_1 - \mu_2\right|^2}$$

Hence,

The sample size calculations were made under the following assumptions:

- 1.) A two-sided statistical test at the standard 5 percent significance level was used ($\alpha = 0.05$);
- 2.) Standardized effect sizes of 0.02, 0.05, 0.10, 0.15, 0.20, 0.35, 0.6, and 0.7 in the difference between PIRE participants and similar participants in the comparison group for outcomes of interest will be detected;
- 3.) The standardized effect sizes will be detected with 80% power (1- β = 0.80);
- 4.) The sample sizes needed from each group were set to equal;
- 5.) The proportion of variance explained by covariates was estimated to be 10 percent;¹

Sample sizes were adjusted to account for potential response rates based on the evaluation of the EAPSI (graduate student fellowship) program. In this evaluation, response rates for EAPSI fellows and unfunded EAPSI applicants were 73 and 46 percent, respectively.²

Exhibit K.1 below shows the sample size of graduate students needed for (comparative analyses using the assumptions made above.

For example, to detect a standardized effect size of 0.2 with 80 percent power in the difference between PIRE and Comparison project graduate students, we will need an analysis sample of size 706 (353 in both groups) assuming a two-sided test at 5% level of significance and that covariates explain 10 percent of the variance.

Assuming a 73 percent response rate among graduate students in the PIRE group, we will need to select a PIRE sample of size 484 in order to achieve an analysis sample of size $n_1 = i353$ (i.e., 353/0.73 = 484). Also, assuming a 46 percent response rate among graduate students in the Comparison group, we will need to select a sample of 767 in order to achieve an analysis sample of size $n_2 = i353$ (i.e., 353/0.46 = 767).

¹ We have assumed that covariates will explain 10 percent of the variance because pre-participation measures of key outcomes will be included in the model.

² Actual sample sizes for the PIRE evaluation may be higher because all participants will have taken part in a PIRE or comparison project and they will have participated more recently than the earliest cohort of EAPSI (2000) fellows. In other words, in the evaluation of PIRE, comparison group members are not denied applicants for NSF funding (in contrast to the comparison group used in the EAPSI evaluation).

Exhibit K.1: Power calculations and Sample Sizes for graduate students										
						Size of Analysis Sample			Size of Selected Sample	
Obs	alpha	power	std_es	var1	var2	n	n1	n2	n1_adj	n2_adj
1	0.05	0.8	0.02	0.9	0.9	70640	35320	35320	48384	76783
2	0.05	0.8	0.05	0.9	0.9	11302	5651	5651	7741	12285
3	0.05	0.8	0.10	0.9	0.9	2826	1413	1413	1936	3072
4	0.05	0.8	0.15	0.9	0.9	1256	628	628	860	1365
5	0.05	0.8	0.20	0.9	0.9	706	353	353	484	767
6	0.05	0.8	0.35	0.9	0.9	231	116	116	159	252
7	0.05	0.8	0.60	0.9	0.9	78	39	39	53	85
8	0.05	0.8	0.70	0.9	0.9	58	29	29	40	63
Notes: <i>Alpha:</i> <i>Power:</i> <i>std_es:</i> <i>var</i> ₁ : <i>var</i> ₂ : <i>n</i> : <i>n</i> ₁ : <i>n</i> ₂ : <i>n</i> ₁ _ <i>adj</i> :	 Level of significance Power Standardized Effect Size we wish to detect (percent of variance explained by covariates) (percent of variance explained by covariates) (percent of variance explained by covariates) Total Analysis Sample Size Required PIRE Group: Analysis Sample Size Required Comparison Group: Analysis Sample Size Required PIRE Group: Size of sample needed in order to obtain analysis sample size assuming a response rate of 73 percent. 									
n2_adj:	Comparison Group: Size of sample needed in order to obtain analysis sample size assuming a response rate of 46 percent									

Two-Sample Test of Proportions

Let π_1 denote the population proportion of "success" in the PIRE group and let π_2 denote the population proportion of "success" in the comparison group. "Success," in this usage refers only to the likelihood that an outcome was observed for a given individual. For example, if the outcome of interest is "accepted an international-based postdoctoral fellowship upon receipt of PhD" for a graduate student, then the two-sample test of proportions indicates the smallest difference in the percentages of PIRE and Comparison group graduate students for whom that outcome was observed that the evaluation can detect.

$$H_0: \pi_1 - \pi_2 = 0$$
 vs. $H_A: \pi_1 - \pi_2 \neq 0$

Let P_1 denote the estimated proportion of "success" in the PIRE group and let P_2 denote the estimated proportion of "success" in the comparison group. Let n_1 and n_2 be the sizes of the $\pi_1(1-\pi_1)$

analysis samples of the PIRE and comparison groups respectively, and let n_1 and

 $\frac{\pi_2(1-\pi_2)}{n_2}$

 n_2 be the sample variances of the PIRE and comparison groups respectively, after controlling for covariates.

Then $P_1 - P_2$ can be used as an estimator for $\pi_1 - \pi_2$; $P_1 - P_2 \sim N = \begin{pmatrix} \pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2} \end{pmatrix}$

The formula that relates effect size, power and sample size is:

 $|\pi_1 - \pi_2| = Z_{\alpha/2} \sum_{i} + Z_{\beta} \sum_{A} i i$; where $\sum_{i} ii$ is the variance under the null hypothesis and $\sum_{A} ii$ is the variance under the alternative hypothesis.

Assume that $n_1 = n_2 = \frac{n}{2}$

Under H_0 , $\pi_1 = \pi_2 = \pi$ (common null have which by convention is set to $\frac{\pi_1 + \pi_2}{2}$) $4\pi(1-\pi)$ $2\pi_1(1-\pi_1) + 2\pi_2(1-\pi_2)$

hence
$$\sum_{0} ii = \frac{4\pi(1-\pi)}{n}$$
 and $\sum_{A} ii = \frac{2\pi_{1}(1-\pi_{1})}{n} + \frac{2\pi_{2}(1-\pi_{2})}{n}$

So

$$|\pi_1 - \pi_2| = Z_{\alpha/2} \frac{4\pi(1-\pi)}{n} + Z_{\beta} \frac{2\pi_1(1-\pi_1)}{n} + \frac{2\pi_2(1-\pi_2)}{n}$$

Hence,

$$n = \frac{\left[Z_{\alpha/.2}^{} \cdot 2 \cdot \sqrt{\pi(1-\pi)} + Z_{\beta} \sqrt{2\pi_1(1-\pi_1)} + 2\pi_2(1-\pi_2) \right]^2}{|\pi_1 - \pi_2|^2}$$

The sample size calculations were made under the following assumptions:

- 1.) A two-sided statistical test at the standard 5 percent significance level was used ($\alpha = 0.05$).
- 2.) Differences of 0.01, 0.04, 0.05, 0.07, 0.08, 0.10, and 0.20 between PIRE and Comparison group participants in proportion of success (i.e., 1, 4, 5, 7, 8, 10, and 20 percentage point differences between groups) will be detected.
- 3.) The effects will be detected with 80 percent power (1- β = 0.80).
- 4.) The sample size in both groups were set to equal
- 5.) The probability of success in the PIRE group is: 0.10 to 0.80^3 .

This sample size was adjusted to account for potential response rates based on the evaluation of the EAPSI (graduate student fellowship) program. In this evaluation, response rates for EAPSI fellows and unfunded applicants were 73 and 46 percent, respectively.

Exhibit K.2 shows the required sizes of selected and analysis samples for graduate students under various scenarios. For example, assuming we require a two-sided test at 5 percent level of significance, and 80 percent power, the probability of success in the PIRE group is 0.5, and given the response-rate assumptions above, the required sample sizes for detection of an ten percentage point difference between the two groups of graduate students are selected samples of 479 and 705 yielding analysis samples of sizes 388 and 388 in the PIRE and comparison groups, respectively.⁴

Note that the sample size estimates in the table vary by the proportion of success of the outcome in the PIRE group. The table below displays sample size estimates for various proportion of success of the outcome in the PIRE group (pi_1 =0.4, 0.5, 0.6 and 0.7).

³ These proportions of "success" are based on empirical data from the EAPSI evaluation, where the "success" is that of EAPSI fellows for the following outcomes: a) employment outside the U.S. since year marking end of fellowship period; b) in current job, works with individuals located in other countries; c) in current job, work with individuals in other countries includes joint publications and/or jointly-developed products; d) type of current work with individuals in other countries includes joint publications and/or jointly-developed products; e) has mentored others from the U.S. traveling to another country to conduct research; f) conducted activities to foster international collaboration; g) engages in one or more activities to foster international collaboration.

⁴ That is, 50 versus 30 percent "success" in PIRE and comparison groups, respectively.

Sheen	icu piopi		Sciveu			up or gro	iuuuic siu	ucinto		
									Size of	
						Size of Analysis Sample			Selected Sample	
Obs	alpha	power	diff	pi1	pi ₂	n	n ₁	n ₂	n₁_adj	n₂_adj
1	0.05	0.8	0.01	0.1	0.09	26990	13495	13495	16660	24536
2	0.05	0.8	0.04	0.1	0.06	1442	721	721	890	1311
3	0.05	0.8	0.05	0.1	0.05	869	435	435	537	791
4	0.05	0.8	0.07	0.1	0.03	387	194	194	240	353
5	0.05	0.8	0.08	0.1	0.02	274	137	137	169	249
6	0.05	0.8	0.10	0.1	0.00	147	74	74	91	135
7	0.05	0.8	0.20	0.1	0.10	71	36	36	44	65
1	0.05	0.8	0.01	0.2	0.19	49281	24641	24641	30421	44802
2	0.05	0.8	0.04	0.2	0.16	2894	1447	1447	1786	2631
3	0.05	0.8	0.05	0.2	0.15	1811	906	906	1119	1647
4	0.05	0.8	0.07	0.2	0.13	880	440	440	543	800
5	0.05	0.8	0.08	0.2	0.12	657	329	329	406	598
6	0.05	0.8	0.10	0.2	0.10	398	199	199	246	362
7	0.05	0.8	0.20	0.2	0.00	68	34	34	42	62
1	0.05	0.8	0.01	0.5	0.49	78479	39240	39240	48444	71345
2	0.05	0.8	0.04	0.5	0.46	4895	2448	2448	3022	4451
3	0.05	0.8	0.05	0.5	0.45	3129	1565	1565	1932	2845
4	0.05	0.8	0.07	0.5	0.43	1592	796	796	983	1447
5	0.05	0.8	0.08	0.5	0.42	1216	608	608	751	1105
6	0.05	0.8	0.10	0.5	0.40	775	388	388	479	705
7	0.05	0.8	0.20	0.5	0.30	186	93	93	115	169
1	0.05	0.8	0.01	0.8	0.79	51164	25582	25582	31583	46513
2	0.05	0.8	0.04	0.8	0.76	3365	1683	1683	2078	3060
3	0.05	0.8	0.05	0.8	0.75	2187	1094	1094	1351	1989
4	0.05	0.8	0.07	0.8	0.73	1150	575	575	710	1045
5	0.05	0.8	0.08	0.8	0.72	892	446	446	551	811
6	0.05	0.8	0.10	0.8	0.70	586	293	293	362	533
7	0.05	0.8	0.20	0.8	0.60	162	81	81	100	147

Exhibit K.2: Minimum detectable differences (in proportions) for given sample sizes for specified proportion observed in the PIRE group of graduate students

Notes:

Alpha: Level of significance

Power: Power

Diff: Difference we wish to detect

*pi*₁: Probability of Success in PIRE Group

*pi*₂: Probability of Success in Comparison Group

n: Total Analysis Sample Size Required

*n*₁: PIRE Group: Analysis Sample Size Required

*n*₂: Comparison Group: Analysis Sample Size Required

*n*₁*_adj*: PIRE Group: Size of sample needed in order to obtain analysis sample size assuming a response rate of 73%.

*n*₂*adj*: Comparison Group: Size of sample needed in order to obtain analysis sample size assuming a response rate of 46%

For undergraduate respondents (PIRE only), a sample size was chosen to produce estimates with a precision of less than .05. Assuming a simple random sample and 95 percent confidence level Exhibit K.3 shows the sample size needed for various levels of precision. Sample size is calculated as $(1.96)^2 * (p^*(1-p))/(\text{Precision})^2$, where *p* was set equal to 0.50.

Exhibit K.3: Precision of estimates for given census size of PIRE undergraduates					
N of respondents	precision				
600	.04				
474	0.045				
384	0.05				
317	.055				