
Appendix L: Non-Response Bias Analysis

Types of Missing Data

There are two types of missing data that can arise in a survey, even after repeated attempts to 
collect data: (1) unit non-response, and (2) item non-response. Our approach to dealing with each
of these is described below.

Unit Non-Response

Unit non-response occurs when an entire data instrument is not received from a potential 
respondent.  The expected non-response rates for this evaluation are greater than 10%, hence we 
will examine for bias because of unit non-response by first examining the response rates overall, 
as well as by year and by relevant subgroups (e.g., cohort year, or by gender and race/ethnicity). 
Large differences in the response rates by year and for subgroups could indicate that potential 
biases may exist1.  For example, if the response rate from women was very low and women were
less likely to belong to the treatment group then any difference in the outcomes between the 
treatment and comparison groups could result in a biased estimate of the impact of the treatment.

To address unit non-response, we will estimate the probability of a person responding to the 
survey both for responding and non-responding individuals, as function of baseline 
characteristics that are available for both types of individuals (e.g. proposal score, cohort year, 
gender), and create weighting classes for adjusting the weights of responding individuals to 
alleviate the bias due to non-response, which is a commonly utilized approach. The following 
steps will be taken to accomplish this task.

Step 1: Fit Models

To estimate the probability of a person responding to the survey we will use logistic regression 
models, where the response (dependent) variable is a dummy variable that takes the value “1” for
responding individuals and take the value “0” for non-responding individuals.  Examples of the 
explanatory (independent) variables are gender, race/ethnicity, proposal score, cohort year, 
citizenship status, and disability status. 

Several models will be fit to identify the set of explanatory variables that have statistically 
significant associations with the dependent variable (p<0.20 criterion) after controlling for other 
statistically significant control variables. This will be accomplished by using backwards 
elimination with forward checking.2   In this method, all of the explanatory variables are entered 
1  Note that a large non-response rate does not necessarily create bias. For example, if the non-respondents were similar across

the treatment and comparison group, then the impact estimate would not be biased necessarily; rather, any effect of the 
program could not be generalized to the non-respondents (i.e. it would create an external validity problem but not 
necessarily an internal validity issue).

2  Backwards elimination methods are attractive from the point of view that they are often used and familiar.  But use of this 
method using the conventional p<0.05 criterion has been criticized from the point of view that the selection criteria tend to 
favor covariates with strong relationships to the outcome, but may omit important confounders (i.e., variables that have a 
weaker relationship to the outcome, but have a strong relationship to the predictor variable of interest).  Maldonado and 
Greenland (1993) evaluated a backwards elimination strategy and a change-in-estimate strategy using simulated data from a 
Poisson regression model. They found that the p-value based method performed adequately when the alpha levels were 
higher than conventional levels (0.20 or more), and found that the change-in-estimate strategy performed adequately when 
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as predictors in the logistic regression model.  The explanatory variable with the largest non-
significant value is dropped from the subsequent model.  This step is repeated until the only 
explanatory variables that remain in the model are those that meet the p<0.20 criterion.  In the 
forwards checking step, each of the previously eliminated control variables are checked by 
adding each one to the model with only the significant predictors.  In this step, each variable has 
a chance to get back into the model.   The final model that results from this process is used to 
calculate individual response propensities.

Step 2: Use Model Results to Calculate Response Propensities

In Step 2, parameter estimates obtained from the fitted model in step 1 will be used to calculate 
the predicted probability that an individual will respond to the survey. The logistic regression 
model is represented as:

log(
π i

1−π i

)=β0+∑
k

βki
,     (Eq. 1)

where π i  is the probability that person i is a responder, given the k explanatory variables in the
final model. The predicted probabilities will be obtained by solving Equation 1 for πi, and 
substituting the parameter estimates (i.e., the values of βk) from the fitted model in place of the 
parameters.  The solution for the predicted probability for person is given by:

π̂ i=

exp ( β̂0+∑
k

β̂ki)

1+exp( β̂0+∑
k

β̂ki)

Each person’s predicted probability of response ( π̂ i ) is called their “response propensity”. 
Individuals with similar response propensities have similar characteristics (explanatory 
variables). In particular, they are similar on the characteristics that are most related to the 
probability of response.

the cut point was set to 10 percent.  However, their data, generated from a Poisson model, and their analysis model, with 
only a single covariate in addition to the key exposure variable, are very different than the models anticipated for our current
purpose.  

Budtz-Jorgensen et al. (2001) compared several covariate selection strategies including backwards elimination and change-in-
estimate. They looked at the backwards elimination strategy with three p-value cut-off levels, 0.05, 0.10, and 0.20, and, 
following the recommendation of Maldonado and Greenland (1993) used a 10% criterion for the change-in-estimate method.
They found that, although the change-in-estimate strategy did an adequate job of identifying confounders and keeping them 
in the model, it sometimes threw out variables that were correlated with the outcome, but were not confounders. Therefore, 
this method threw out variables that, if retained, would have reduced the residual error and reduced the standard error of the 
exposure coefficient (thus increasing the power to detect exposure effects – exposure effect is analogous to our key predictor
of interest).  Although they found that backwards elimination with a p<0.05 criterion was un-suited for confounder 
identification, they found that when the p-value criterion was set to p<0.20, backwards elimination strategy resulted in a 
reduction of residual error variance and did not throw out important confounders.  They recommended the backwards 
elimination strategy with a p<0.20 criterion over the change-in-estimate strategy.  

See:  Maldonado, G. and Greenland, S. (1993). Simulation study of confounder-selection strategies. American Journal of 
Epidemiology 138, 923-936; and Budtz-Jorgensen, E., Keilding, N., Grandjean, P., Weihe, P., White, R. (2001). Confounder
identification in environmental epidemiology: Assessment of health effects of prenatal mercury exposure. Downloaded from
http://www.pubhealth.ku.dk/bsa/research-reports/paper_ms.ps
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Step 3: Group Individuals with Similar Response Propensities into Weighting Classes

In this step, individuals with similar response propensities will be grouped into weighting 
classes.  Weighting classes will be formed to ensure that all individuals within a class fall within 
a narrow range of response propensity scores. The boundaries for the weighting classes will be 
determined by creating approximately equal-interval propensity score groupings. 

Step 4: Within Weighting Class, Inflate Weights of Responding Individuals to Sum to Population 
Total

The weights of responding individuals within a class will be inflated so that the responding 
individuals within the class represent the population of responding and non-responding 
individuals within that class.  That is, because the non-responders within a given class are 
statistically similar to the responders, the weighting procedure increases the degree to which the 
responders “represent” the class as a whole.   

Within each weighting class, the weights of all individual (both responders and non-responders) 
will be summed (since we took a census of applicants each individual has an original weight of 
1).  Next, the weights of just the responding individuals will be summed.  Then, within each 
weighting class, new, adjusted weights of responding individuals will be calculated by 
multiplying the initial weights by a factor equal to the ratio of the sum of the weights of all 
individuals to the sum of the weights of the responding individual.  The adjusted weight for the 
ith person in the jth weighting class is represented symbolically by:

w ij
adj=w ij∗

∑
k ∈ responders ∧ nonresponders

wkj

∑
i ∈ responders

wij
,

where w ij  is the initial sampling weight for the ith person in the jth weighting class, the 
summation in the numerator is over all k individuals in the set of responders and non-responders 
within weighting class j, the summation in the denominator is over all i individuals in the set of 
responders in weighting class j, and there are j = 1,…, n weighting classes.  The new, adjusted 
sampling weights sum to the population total. This result can be written symbolically as:

∑
j

∑
i ∈ responders

w ij
adj

=∑
j

∑
k ∈ responders ∧ nonresponders

wkj

Item non-response

Item non-response refers to one or more specific uncompleted items on an otherwise 
completed/returned questionnaire. When the amount of missing data on an individual item is 
modest (across all returned surveys), we will calculate statistics on only the non-missing items, 
which is equivalent to an assumption that missing data on an item are missing completely at 
random. The amount of missing data for each item will be presented in all tables/figures included
in reports.

Appendix L: Non-response bias analysis 3



Where necessary for impact analyses, we will take distinct approaches to imputing values 
depending on whether data are missing for an item used to construct a covariate or predictor 
variable, or an outcome variable. For impact analyses where missing data on covariate or 
predictor variables require imputation to prevent having to omit those respondents from the 
analysis, we will use a “dummy-variable” method. This method entails (i) creating a dummy 
variable that equals “1” if the value of the variable is missing and “0” otherwise, (ii) adding the 
dummy variable to the impact model as a covariate, and (iii) replacing the missing value of the 
original variable with any constant, such as zero or the mean for non-missing cases. 

If the missing data occurs in an item used to construct an outcome—that is, one of the primary 
outcomes of interest that we have specified above (for example, the post-fellowship number of 
publications produced with a foreign co-author)—we will impute values if more than 20% of 
respondents have missing values. We will use the multiple stochastic regression imputation 
approach recommended by Puma et al 2009.3 In this multiple imputation approach, instead of 
generating one set of values to replace the missing outcome, we generate multiple sets of 
imputed values, for example 10 sets of values. In this procedure, first, predicted values (to 
replace the missing values) are generated from an OLS regression that is estimated with data that
is available for all individuals (respondents and non-respondents).  Then, to each predicted value,
we add a randomly-selected residual from the OLS regression, to account for the inherent 
uncertainty in predicting missing data—this comprises the first set of imputed values. Ten sets of
such predicted outcome values are generated, each by adding a randomly selected set of residuals
from the OLS regression. Next, the impact estimate is calculated using each of the ten datasets in
which missing data were replaced with regression-predicted values with the random residuals. 
That is, we calculate ten different estimates of the impact of the program on the specified 
outcome; each impact estimate has used one of the ten datasets in which missing data were 
replaced with the predicted value plus residual. The final impact estimate (that is, the estimate of 
the effect of the program on the outcome) is the mean of the ten individual impact estimates. The
multiple imputation method is preferred over a single imputation method because the single 
imputation tends to understate the true variability in the imputed variable and leads to 
underestimated standard errors.

3     Puma, M.J. Olsen, R.B., Bell, S.H., and Price, C. (2009). What to do when data are missing in group randomized 
controlled trials. Washington DC:  U.S. Department of Education, NCEE 20090049 (available 
http://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=NCEE20090049).
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