PFI:AIR PROGRAM OBJECTIVES

- Leverage NSF research award investments to accelerate the translation and transfer of research discoveries into commercial realities.
 - AIR-Technology Translation (TT)
 - Faculty members translate research results achieved under a current or prior (within six years) NSF research award onto a path toward commercial reality. AIR-TT research is focused on understanding key behavior/ characteristics/ processes in order to develop, demonstrate and evaluate a proof-of-concept, prototype, or scale-up.
 - Grantees demonstrate an initial understanding of the market potential and commercialization strategy at the proposal stage. This understanding is expected grow and mature over the course of the award.
 - AIR-Research Alliance (RA):
 - Faculty members engaged in research through a current or prior (within three years) NSF funded Research Consortium (such as an NSF Center) develop additional research partnerships and secure third-party funding to accelerate translation and transfer of research results into competitive technologies and commercial reality.
 - "Translational" or "use-inspired" research is necessary to accelerate Center-derived, market-valued technologies toward commercial realization. Third party funding will enable additional business activities such as market studies, the development of a business plan, patent filings, etc. AIR-RA grantees demonstrate an initial understanding of the market potential and commercialization strategy at the proposal stage that will grow over the course of the award.
- Engage students and faculty in entrepreneurial/ innovative thinking.
 - Participation in an AIR-TT or AIR-RA award will provide participants (undergraduate students, graduate students and/or post-docs, and faculty) experiences that will enhance their knowledge of research translation, innovation, and entrepreneurship beyond the usual academic research experience.
- Catalyze the development or enhancement of a network of connections between research partners and investors
 - AIR-RA: The partnerships and collaborations between the NSF-funded research alliance, third party investors and research partners will lead to a sustainable academic-based innovation ecosystem and enable the creation of new jobs.
 - AIR-TT: There is a participant/collaborator on the award who has "business experience" and will advance the PI's understanding of the process necessary for successful commercialization of technology.

PFI:AIR LONG-TERM LOGIC MODEL

INPUTS

Initial discovery from an NSFfunded research award, now focused on market opportunity Funding and Logistics

- •TT: \$200K for 18 months
- •RA: \$800K for 3 years

Expertise NSF-funded researchers

- •TT: Plus co-PI or senior personnel with "business experience" (e.g., tech transfer office, business school, been part of a start-up)
- RA: Plus research partners (may be additional researcher from university, business, industry, etc. must add tech/research capability that team does not already have)
- Process, Materials and Resources
- •TT: contributed by university •RA: contributed by university and research partner(s)
- •RA: 1-to-1 match funding from 3rd party investor(s)
- Preliminary market understanding
 Students and/or Postdocs
- RA: Cooperative Research Agreements and/or Partnership Letters
- TT (subset): Cooperative Research Agreements and/or Partnership Letters, if partnership involves IP
 A subset of awardees are I-Corps graduates
- •Opportunities to attend Tech Showcase events

PROJECT ACTIVITIES

•TECHNOLOGY ADVANCEMENT:

 Identify and overcome technical and/or market barriers and improve specs to move the technology closer to commercialization

•Develop, demonstrate and evaluate prototype or proof-of concept

Market/commercialization research

•TT: ~10-20% time and/or budget is spent on market related activities

•RA: ~10% time and/or budget is spent on market related activities (with budgetary assistance from 3rd party investors)

Midterm Accountabilit

- •TT: Annual Report
- •RA: Midterm Review and response to recommendations from internal review at NSF

• PARTNERSHIP MODEL:

Networking with research partner(s) and 3rd party investors (or potential investors for TT)

- •RA: Establishment of a sustainable relationship between academic research team, research partner(s), and 3rd party investor(s)
- •TT: Establishment of relationship with person who has business experience

Leveraging of additional capital from sources outside the university or NSF (RA and a subset of TT) Make progress on a commercialization plan for how to

- get product to market HUMAN CAPITAL:
- •Education of students and/or postdocs in use-inspired research, innovation, and entrepreneurial experience

OUTPUTS

•TECHNOLOGY ADVANCEMENT:

- Prototype, proof-of-concept, or scale-up
- •A subset of awardees publish their research findings
- A subset of awardees file patent and license applications of new technology developed from AIR awards, or demonstrate progress in the patent/licensing process
 More fully-developed marketing/ commercialization plans are produced
- •TT:A subset of awardees identify other funding sources to continue the development of their technology (e.g., STTR, private investment)
- •RA: A subset of awardees successfully translate at least one technology into use

•PARTNERSHIP MODEL:

- •A subset of 3rd party investors/research partners/collaborators continue the relationship after the life of the award
- Memoranda of Understanding or Cooperative Research Agreements between partners are established if appropriate for continuation of the relationship

•HUMAN CAPITAL:

• Students and Postdocs are trained in real-life practicality of technology transfer and useinspired research.

IMMEDIATE OUTCOMES

• TECHNOLOGY ADVANCEMENT:

- Knowledge and information in the technology sector is advanced
 Researchers and/or students pursue further research funding (public or private) for the AIR-
- (public or private) for the AIRsupported technologyA subset of awardees identify new
- A subset of awardees identify new or different applications for the technology
 HUMAN CAPITAL:
- •HUMAN CAPITAL:
- A subset of researchers and/or students (academic and/or industry) working on AIR research become innovators and/or entrepreneurs in other contexts
 BUSINESS DEVELOPMENT:

•A subset of new businesses are

incorporated around the funded technology and/or by AIR partners
TT: A subset of awardees license the technology

INTERMEDIATE OUTCOMES

•TECHNOLOGY ADVANCEMENT:

•RA: Technology iteration cycle is shortened due to involvement of research partners and 3rd party investors

•HUMAN CAPITAL:

- •Student participants pursue career in practically oriented research •PARTNERSHIP MODEL:
- Partnerships from AIR awards are sustained over time to work on new technologies
- New academia-industry partnerships are formed by AIR awardees based on lessons learned in the AIR program

•BUSINESS DEVELOPMENT:

•Jobs are created via hiring employees to companies established from AIR funded award

•ACADEMIC CULTURE:

- •Research and partnership increase academic institutional reputation as an "innovation hub"
- •Universities demonstrate culture shift by rewarding innovation and commercialization efforts in T&P process alongside research, teaching, and service

LONG-TERM OUTCOMES/ IMPACT

•TECHNOLOGY DEVELOPMENT:

•Improved technology available in the market leading to more competitive products

• PARTNERSHIP MODEL:

- •Adoption/dissemination of the AIR partnership model by other institutions
- •University continues to promote and support similar partnerships via AIR or other avenues

•ACADEMIC CULTURE:

 Academic culture shifts to value academic-industry partnerships

Possible Indicators for AIR

Human Capital Development

ATTRIBUTION

- Number of academic participants pursuing continued relationship with their AIR partners or pursuing involvement with other industry partners
- Number of students and postdocs trained by AIR PI

CONTRIBUTION

- •Number of faculty reporting career changes/enhancements or research approaches as a result of the relationship sponsored by the AIR award
- Number of start-ups formed by members of the AIR partnership team
- Number of students/postdocs educated/trained in AIR labs
- Number of students/postdocs in AIR labs reporting training in market practicalities
- •Number of AIR students/postdocs/PIs who become innovators or entrepreneurs outside of or in addition to academia
- Number of AIR students/postdocs/PIs who pursue practically oriented research careers after the life of the award
- Number of new professional development opportunities for employee/researcher training and/or exchange created as a result of the AIR partnership
- Specific training opportunities in innovation/entrepreneurship are developed

Technology Advancement

ATTRIBUTION

- Number of AIR projects that successfully develop a prototype, proof-of-concept, or scale-up
- •Identification of the reason for failure if the AIR-supported technology does not successfully translate to commercial application
- •Number of publications resulting from the AIR sponsored research during/after the award

• CONTRIBUTION

- •Number of AIR awardees reporting shorter-than-anticipated technology iteration cycle due to research partners and 3rd party investors
- Publications on technology and/or advancements in the underlying discovery supported by the AIR award
- Growth in IP position of the technology (patent and licensing application and activities)
- •Number of AIR awardees who identify new or different applications for the technology
- •Number of projects that successfully translate technology to commercial application
- Via licensing
- Via small business start-up

Business Development

ATTRIBUTION

•Number of AIR technology-related patents or licenses purchased from university IP

•Number of AIR awards resulting in MOUs or CRAs between partners

•Number of AIR PIs submitting to other IIP programs (e.g., I-Corps, SBIR, etc.), or other NSF tech transfer programs, or other federal agencies

•Number of new or continuing awards in tech transfer or research from other agencies or institutions leveraged from the AIR award

CONTRIBUTION

- •Number of AIR awardees that incorporate a business based on their technology
- •Number of employees hired by businesses created from AIR funded technology

Quality, health, and sustainability of Partnership Model

•ATTRIBUTION

- •Number of industry participants pursuing continued relationship with their AIR partners or other academic partners, collaborators, or 3rd party investors
- •Number of partnerships from AIR awards that are sustained to work on new technologies after the life of the award
- •Number of AIR awardees that form new academia-industry partnerships after the life of the award
- •Number of new 3rd party investors attracted to AIR-RA after AIR is awarded, but prior to the end of the award
- CONTRIBUTION
- •Number of similar partnerships via AIR or other avenues that university continues to promote and support
- •Number of universities adopting similar partnership programs
- •Number of new potential industry partners that seek relationships with the academic institution due to AIR success

Academic culture that values Academic-Industry Partnerships

•ATTRIBUTION

- •Number of new AIR awards put forward by universities that previously received AIR awards
- CONTRIBUTION
- •Number of university departments that recognize partnerships with industry and/or commercialization efforts as part of tenure & promotion process
- •Number of universities that report or otherwise demonstrate in public literature their reputation as an "innovation hub", specifically citing AIR awards
- •Number of new AIR awards that previously received I-Corps awards

Data Sources for AIR Indicators

RPPR/Annual Report

- Publications on technology and/or advancements in the underlying discovery supported by the AIR award
- Growth in IP position of the technology (patents and licensing activities)
- Number of patents or licenses purchased from university IP
- Number of students and postdocs trained by AIR PI

Other NSF Data Systems

- Number of AIR PIs submitting to other IIP programs (e.g., I-Corps, SBIR, AIR, etc.) or other NSF programs
- Number of new or continuing awards from NSF

Life-of-award Monitoring System

- Identification of the reason for failure if the AIR-supported technology does not successfully translate to commercial application
- Number of AIR PIs submitting to other federal agencies
- Number of new 3rd party investors attracted to AIR-RA projects after the AIR grant is awarded

Post-award Monitoring System

- Publications on technology and/or advancements in the underlying discovery supported by the AIR award
- Number of AIR technology-related patents or licenses purchased from university IP after the award
- Number of academic participants pursuing continued relationship with their AIR partners or with other industry partners
- Number of industry participants pursuing continued relationship with their AIR partners or other academic partners
- Total number of new partnerships developed out of this relationship (aggregate data from post-award monitoring system)
- Number of AIR PIs submitting to other federal agencies
- Number of new or continuing awards from other agencies or institutions leveraged from the AIR award
- Growth in IP position of the technology (patents and licensing activities) after the award
- Number of AIR-supported technologies that have successfully translated to commercial application
- Number of new positions and opportunities for employee training created as a result of the AIR partnership
- Number of students/postdocs continuing in related fields and/or similar innovation or entrepreneurial partnerships
- Number of faculty reporting career changes/enhancements or research approaches as a result of the relationship sponsored by the AIR award
- Number of new research directions identified (e.g., new and/or different applications of the AIR technology)
- Number of start-ups formed by any members of the AIR partnership team
- Number of AIR partnerships reporting development of a business plan for the platform technology
- Shortening of average development cycle of platform technology to commercialization
- Identification of the reason for failure if the innovation does not make it to market

Other Data Sources (University Reporting, Google Scholar, Internal NSF)

- Number of similar partnerships via AIR or other avenues that university continues to promote and support
- Number of universities adopting similar partnership programs
- Number of new potential industry partners that seek relationships with the academic institution due to AIR success
- Number of new AIR awards put forward by universities that previously received AIR awards
- Number of university departments that recognize partnerships with industry and/or commercialization efforts as part of tenure & promotion process
- Number of universities that report or otherwise demonstrate in public literature their reputation as an "innovation hub", specifically citing AIR awards