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Minimum Detectable Differences for the  
2015 NSCG Methodological Experiments  

 
I. Background 
This appendix provides minimum detectable differences for the proposed sample sizes in each of 
the 2015 NSCG methodological experiments.   

 
New Sample Experiment: 

• Adaptive Design Experiment – 34,000 cases will be selected for the control group and 
8,000 cases will be selected for the treatment group. 

 
Returning Sample Experiments: 

• Adaptive Design Experiment – 10,000 cases will be selected for the control group and 
10,000 cases will be selected for the treatment group. 

• Questionnaire Impact Experiment – 60,000 cases will be selected for the control group 
and 3,500 cases will be selected for each of the three treatment groups. 

• Email Reminder Experiment – 45,000 cases will be selected for the control group and 
3,500 cases will be selected for each of the three treatment groups. 

 
II. Minimum Detectable Differences Equation and Definitions 
To calculate the minimum detectable difference between two response rates with fixed sample 
sizes, we used the formula from Snedecor and Cochran (1989) for determining the sample size 
when comparing two proportions. 
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where: 
δ = minimum detectible difference 
α* = alpha level adjusted for multiple comparisons 
Zα*/2 = critical value for set alpha level assuming a two-sided test 
Zβ = critical value for set beta level   
p1 = proportion for group 1 
p2 = proportion for group 2 
D = design effect due to unequal weighting 
n1 = sample size for a single treatment group or control 
n2 = sample size for a second treatment group or control 
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The alpha level of 0.10 was used in the calculations.  The beta level was included in the formula 
to inflate the sample size to decrease the probability of committing a type II error.  The beta level 
was set to 0.10. 
 
The estimated proportion for the groups was set to 0.50 for the sample size calculations.  This 
conservative approach minimizes the ability to detect statistically significant differences.   
 
Design effects represent a variance inflation factor due to sample design when compared to a 
simple random sample.  Because all experiment samples and the control will be representative, 
the weight distributions should be similar throughout all samples, negating the need to include a 
design effect.  We do not expect to see a weight-based or sampling-based effect on response in 
any of the samples.  However, for the sake of completeness, minimum detectible differences 
were calculated both ways, including and ignoring the design effect22.   
 
III. Pairwise Comparisons and the Bonferroni Adjustment 
The number of pairwise comparisons included in the adaptive design experiment evaluation is 
one (treatment vs. control).  For the other experiments (the questionnaire impact and email 
reminder experiments), the number of pairwise comparisons increases because treatment groups 
can be compared.  In these instances, α* is adjusted to account for the multiple comparisons.   
 
The Bonferroni adjustment reduces the overall α by the number of pairwise comparisons so 
when multiple pairwise comparisons are conducted the overall α will not suffer.  The formula is: 

cn
αα =*  

 
The adjusted alpha α* is calculated by dividing the overall target α by the number of pairwise 
comparisons, nc.  It is worth noting that, despite being commonly used, the Bonferroni 
adjustment is very conservative, actually reducing the overall α below initial targets.  An 
example showing how the overall α is calculated using an alpha level of 0.10, the Bonferroni 
adjustment, and 25 pairwise comparisons follows:   
 

cn
overall *)1(1 αα −−=  

100.0095.0)004.01(1 25 <=−−=overallα  
 
 

                                                   
22 Design effects were calculated by examining the weight variation present in all cases in the 2015 
NSCG new sample (5.983 for new sample experiment), and the returning sample (6.174 for the returning 
sample experiments). 
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αoverall is the resulting overall α after the Bonferroni correction is applied; 
αtarget = 0.100, and is the original target α level; 
nc = 25, and is the number of comparisons 
α* = αoverall/ nc = 0.004, and is the Bonferroni-adjusted α 

 
In this example, the Bonferroni adjustment actually overcompensates for multiple comparisons, 
making it more likely that a truly significant effect will be overlooked.   
 
Sample sizes were provided by NCSES in Section I of this appendix and are used in the formula.  
All minimum detectable differences using the Bonferroni adjustment were calculated and are 
summarized at the end of this appendix in table form.   

 
IV. A Model-Based Alternative to Multiple Comparisons 
Rather than relying on the Bonferroni adjustment for multiple comparisons, effects on response, 
cost per case or other outcome variables could be modeled simultaneously to determine which 
treatments have a significant effect on response.   
 
All sample cases, auxiliary sample data, and treatments are included in the model below, which 
predicts a given treatment’s effect on response rate (or other outcome variable). 
 

εαββ ++Ι+= Xy
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Assuming response rate is the outcome variable of interest:  
y  is the average response propensity (response rate) for the entire sample; 

0β  is the intercept for the model; 

1β


 is a vector of effects, one for each treatment 

Ι


 is a vector of indicators to identify a treatment in 1β


 
α  is a scalar vector 
X


 is a matrix of auxiliary frame or sample data 
ε  is an error term 

 
Once data collection is complete, the average response propensity is equal to the response rate.  
In the simplest case, no treatment has any effect (the 2nd term would drop out), and no auxiliary 
variables explain any of the variation in response propensities (the 3rd term would drop out).  In 
that case, the average of the response propensities, and thus the response rate, would just equal:  
 

εβ += 0y  
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However, a more complicated model gives information about each treatment’s effect (2nd term) 
while taking into account sample characteristics (3rd term) that might augment or reduce the 
effect of a given treatment.   
 
As a simple example, ignore the error term, and assume the overall mean response propensity 
was 72%.  Also, assume the mean response propensity for a given treatment group was 83%.  If 
only terms 1 and 2 were included in the model (no sample characteristics accounted for), the 
given treatment appears to have increased the response propensity by 11%.  However, if the 
sample was poorly designed, or if a variable not included in the sample design turned out to be a 
good predictor of response, there is value in adding the 3rd term.  If auxiliary information added 
by the 3rd term shows that the cases in a particular sample group are 5% more likely to respond 
than the average sample case (because of income, internet penetration, age, etc.), this would 
suggest that while the treatment group had a response propensity 11% higher than the average, 
5% came from sample person characteristics, and only 6% of that increase was really due to the 
treatment.   
 
This method has several benefits over the multiple comparisons method.  First, the number of 
degrees of freedom taken up by the model is the number of treatment groups plus one for the 
intercept, which is far fewer than the number of pairwise comparisons that might be conducted.  
Second, because confidence intervals are calculated around the 1β


 values, it is easier to observe 

a treatment’s effect on the outcome measures.  Third, variables can be controlled for in the 
model, making significant results more meaningful.  While we are striving to ensure the 
experimental samples are as representative (and as similar) as possible, the ability to add other 
variables to the model helps control for unintended effects. 
 
The method uses response propensities, not the actual response rate.  While the mean response 
propensity after the last day of data collection equals the overall response rate, it is important to 
note how the propensity models are built.  If they are weighted models, weighted response 
propensities should be used in this model.  The weights could be added as one of the auxiliary 
variables included in the X


 matrix.   

 
V. Comments 
It is worth noting from the calculations below that even using the Bonferroni adjustment, and 
conducting all pairwise comparisons, a difference of 3% - 4% in outcome measures should be 
large enough to appear significant, when the design effect is excluded from the calculations.  
Because the experimental samples are all systematic random samples, and should have similar 
sample characteristics and weight distributions, excluding the design effect seems appropriate.
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Minimum Detectable Differences for the 2015 NSCG Methodological Experiments 
  

                      Minimum Detectable Difference Equation for Response Rates 
 

δ = minimum detectible difference 
 

 
 

   
∗δ = minimum detectible difference without using design effect 

   
α* = alpha level adjusted for multiple comparisons (Bonferroni) 

   
Zα*/2 = critical value for set alpha level assuming a two-sided test 

 
 

 
 

Zβ = critical value for set beta level   
 

 
 

 
p1 = proportion for group 1 

 
 

 
 

p2 = proportion for group 2 
 

 
 

 
deff = design effect due to unequal weighting 

 
 

 
 

n1 = sample size for group 1 
 

 
 

 
n2 = sample size for group 2 

                      Adaptive Design Experiment (new sample) 
             8,000 Cases in Experimental Group                

α* = 0.100     
               Zα*/2 = 1.645     
     

 
         Zβ = 1.282 δ =  0.0445   

    
  

      
  

 p1 = 0.5 ∗δ =  0.0182   
    

  
      

  
 p2 = 0.5     

               deff = 5.983     
               n1 = 8,000     
               n2 = 34,000     
               

                      Adaptive Design Experiment (returning sample) 
             10,000 Cases in Experimental Group  

              α* = 0.100                    
Zα*/2 = 1.645                    

Zβ = 1.282 δ =  0.0514                  
p1 = 0.5 ∗δ =  0.0207                  
p2 = 0.5                    
deff = 6.174                    
n1 = 10,000                    
n2 = 10,000                    
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Questionnaire Impact Experiment 
              Option 1:  3,500 Cases in Each of Three 

Treatment Groups, Each Compared 
Individually to the Control Group (Multiple 
Comparisons Ignored) 

 Option 2:  3,500 Cases in Each of Three 
Treatment Groups, Each Compared to the 
Control Using Multiple Comparisons [ = 3] 

 Option 3:  3,500 Cases in Each of Three 
Treatment Groups, Each Compared to the 
Control or Each Other Using Multiple 
Comparisons [(4!/2!2!) = 6] 
(Smallest Pair of Sample Sizes Used) 

α* = 0.100      α* = 0.033   
   α* = 0.017     

Zα*/2 = 1.645      Zα*/2 = 2.128   
   Zα*/2 = 2.394     

Zβ = 1.282 δ =  0.0632    Zβ = 1.282  δ =  0.0737    Zβ = 1.282 δ =  0.1092   
p1 = 0.5 ∗δ =  0.0254    p1 = 0.5 ∗δ = 0.0296    p1 = 0.5 ∗δ =  0.0439   
p2 = 0.5      p2 = 0.5   

   p2 = 0.5     
deff = 6.174      deff = 6.174   

   deff = 6.174     
n1 = 3,500      n1 = 3,500   

   n1 = 3,500     
n2 = 60,000      n2 = 60,000   

   n2 = 3,500     
                       
Email Reminder Experiment 

              Option 1:  3,500 Cases in Each of Three 
Treatment Groups, Each Compared 
Individually to the Control Group (Multiple 
Comparisons Ignored) 

 Option 2:  3,500 Cases in Each of Three 
Treatment Groups, Each Compared to the 
Control Using Multiple Comparisons [ = 3] 

 Option 3:  3,500 Cases in Each of Three 
Treatment Groups, Each Compared to the 
Control or Each Other Using Multiple 
Comparisons [(4!/2!2!) = 6] 
(Smallest Pair of Sample Sizes Used) 

α* = 0.100      α* = 0.033      α* = 0.017     
Zα*/2 = 1.645      Zα*/2 = 2.128      Zα*/2 = 2.394     

Zβ = 1.282 δ =  0.0638    Zβ = 1.282 δ =  0.0743    Zβ = 1.282 δ =  0.1084   
p1 = 0.5 ∗δ =  0.0257    p1 = 0.5 ∗δ =  0.0299    p1 = 0.5 ∗δ =  0.0436   
p2 = 0.5      p2 = 0.5      p2 = 0.5     
deff = 6.174      deff = 6.174      deff = 6.174     
n1 = 3,500      n1 = 3,500      n1 = 3,500     
n2 = 45,000      n2 = 45,000      n2 = 3,599     




