

$\begin{aligned} & \stackrel{\#}{\tilde{0}} \\ & \underline{\circ} \\ & \underline{\circ} \end{aligned}$	B-Lac	MICs ($\mu \mathrm{g} / \mathrm{ml}$) to Antimicrobial Agents								Date tested (mm/dd/yyyy)	$\begin{aligned} & \overline{0} \\ & \stackrel{4}{c} \\ & 0 \end{aligned}$
		Pen	Tet	Gen	Cfx	Cro	Cip	Azi	Opt		
01	$\square{ }_{1(P)}^{\square} \quad \square$									_1_1.	
02	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_/__/	
03	$\square \frac{\square}{1(P)} \underset{2(N)}{\square}$									-1_1	
04	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_1__1	
05	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									-1_1	
06	$\square \frac{\square}{1(P)} \quad \square$									_/__/	
07	$\square \frac{\square}{1(\mathbb{P})} \quad \square$									_1_1	
08	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_/__/	
09	$\underbrace{}_{1(\mathrm{P})} \quad{ }_{2(\mathrm{~N})}$									-1_1	
10	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_1_1/	
11										-1_1	
12	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_1_1	
13										_1_1	
14	$\square \frac{\square}{1(\mathbb{P})} \frac{\square}{2(N)}$									_1_1.	
15	$\square \frac{\square}{1(\mathbb{P})} \frac{\square}{2(N)}$									-1_1	
16	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_/__/	
17	$\square \frac{\square}{(\mathbb{P})}$									_1_1	
18	$\square_{1(P)} \frac{\square}{2(N)}$									_/_1/	
19	$\underbrace{}_{1(\mathrm{P})} \quad \underset{2(\mathrm{~N})}{ }$									_1_1	
20	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_1__1	
21	$\underbrace{}_{1(\mathrm{P})} \quad \underbrace{}_{2(\mathrm{~N})}$									-1_1	
22	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_/__1_	
23	$\square \frac{\square}{1(P)} \quad \frac{\square}{2(N)}$										
24	$\square \frac{\square}{1(P)} \frac{\square}{2(N)}$									_1_1	
25										1_1	

Coding Instructions

Sentinel site codes

Albuquerque	ALB	Los Angeles	LAX
Atlanta	ATL	Minneapolis	MIN
Birmingham	BHM	New Orleans	NOR
Boston	BOS	New York City	NYC
Buffalo	BUF	Orange County	ORA
Chicago	CHI	Philadelphia	PHI
Cleveland	CLE	Phoenix	PHX
Columbus	COL	Pontiac	PON
Dallas	DAL	Portland	POR
Greensboro	GRB	San Diego	SDG
Honolulu	HON	San Francisco	SFO
Indianapolis	IND	Seattle	SEA
Kansas City	KCY	Tripler	TRP
Las Vegas	LVG		

Specimens collected during:	Enter all four digits of the year, followed by the two digit code corresponding to the month (01 for January, 02 for February, etc) in which the specimens were collected.
B-Lac:	($ß$--lactamase test) Check the appropriate box. 1 = positive 2 = negative
Pen:	(penicillin MIC) Valid dilutions: $0.008,0.015,0.03,0.06,0.125,0.25,0.5,1.0,2.0,4.0,8.0,16.0,32.0,64.0$
Tet:	(tetracycline MIC) Valid dilutions: $0.06,0.125,0.25,0.5,1.0,2.0,4.0,8.0,16.0,32.0,64.0$
Gen:	(gentamicin MIC) Valid dilutions: 1.0, 2.0, 4.0, 8.0, 16.0, 32.0
Cfx:	(cefixime MIC) Valid dilutions: $0.002,0.004,0.008,0.015,0.03,0.06,0.125,0.25,0.5,1.0,2.0$
Cro:	(ceftriaxone MIC) Valid dilutions: $0.001,0.002,0.004,0.008,0.015,0.03,0.06,0.125,0.25,0.5,1.0,2.0$
Cip:	(ciprofloxacin MIC) Valid dilutions: $0.001,0.002,0.004,0.008,0.015,0.03,0.06,0.125,0.25,0.5,1.0,2.0,4.0,8.0,16.0$
Azi:	(azithromycin MIC) Valid dilutions: $0.008,0.015,0.03,0.06,0.125,0.25,0.5,1.0,2.0,4.0,8.0,16.0,32.0,64.0,128.0,256.0$
Opt:	(optional agent)
Date tested:	(mm/dd/yyyy) Enter month, day, and year of isolate testing.
Control ID:	Corresponds to the Control ID batch on Form 3: Control Strain Susceptibility Testing. Valid options are A, B, C, or D.

