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Introduction

Economists have been concernedwithmeasuring the economic

value of recreational uses of the environment for over 50 years.

This has been largely motivated by benefit–cost analyses of

environmental policies and damage assessments where legal

rules call for valuation in circumstances where some harm has

been done to the environment. Benefit–cost analysis under the

CleanWater Act (USA) is a good example of the former wherein

values due to improved water quality, such as better fishing and

swimming, are needed to judge the regulatory impact of water

quality standards. Damage assessment under the Oil Pollution

Act (USA) is a good example of the latter where analysts seek

values of lost recreational uses, such as beach closures or lower

hunting quality, to establish the size of compensable payments.

Economists have used both revealed and stated preference

methods to estimate recreational use values. The travel cost

model (TCM) is the primary revealed preference method used

in this context. It has been in existence since Harold Hotelling

suggested the method in his now famous letter to the director

of the National Park Service in 1949. By most accounts, it is

one of the success stories in valuing environmental goods. It

enjoys broad application in policy settings, and the scholarly

literature addressing the theory and empirical method has

grown considerably in the past three decades.

The basic insight underlying the TCM is that an individual’s

‘price’ for recreation at a site, such as hiking in a park or fishing

at a lake, is his or her trip cost (including out-of-pocket travel

and time cost) of reaching that site. Viewed in this way, in-

dividuals reveal their willingness to pay for recreational uses of

the environment in the number of trips they make and/or the

sites they choose to visit. The actual measurement of these

values entails some form of demand estimate for recreation

trips and, in turn, measurement of consumer surplus.

This article provides an introduction to the TCM and how it

is used to value recreation sites and the attributes of recreation

sites. It is intended to be comprehensive but will not develop

the theory or econometrics underlying each model or address

all of the methodological inquiries pertaining to the validity

and robustness of the model. It is instead a statement of the

current practice in practical terms.

It is common to classify TCMs into three groups: seasonal

demand, site choice, and Kuhn–Tucker (KT). The lines be-

tween these models have blurred somewhat with the advance

of research, but this classification still helps in organizing the

material.

The earliest TCMs, dating back to the 1960s, are seasonal

demand models that work much like a demand curve for

any consumer good. Trip cost is treated as the ‘price’ of the

good and the number of trips taken over a season is treated

as the ‘quantity demanded.’ The simple observation that

the closer one lives to a site (lower price), the more trips

one takes (higher quantity demanded) is taken as a simple

downward-sloping demand curve. To estimate such a curve,
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one gathers cross-sectional data on the number of trips taken

by people living at different distances from the site. Then, by

regressing the number of trips on the measured trip cost, a

demand relationship is revealed, from which conventional

measures of surplus may be derived. Seasonal demand

models have proved to be useful for valuing the opening and

closure of a site and computing per trip values for use in

transfer studies. It is especially useful if policies are focused

on a single site or on only a few sites that serve as substitutes for

one another.

Site choice models, however, are now the most commonly

used form of the TCM. These were introduced in the mid-

1980s and were motivated by a need for models that allow

for valuation of changes in site quality (e.g., improved water

quality at lakes) and to consider recreation demand where the

number of sites is large. These models were built during the

rapid expansion of random utility theory in the 1980s and

1990s that eventually led to Daniel McFadden’s Nobel Prize

for work in this area. His Nobel Prize lecture actually included

an application using a TCM.

Site choice models consider an individual’s choice of visit-

ing one site from among many possible sites on a given

choice occasion. While approaches exist for accommodating

seasonal demand in site choice models, at their heart, they are

based on the choice of a single site during a single choice

occasion. Which site a person visits is assumed to be a function

of the attributes of the sites (size, quality, access, etc.) and the

trip cost of reaching the site. Individuals reveal their relative

values of site attributes in the sites they choose. Because trip

cost is one of the attributes, an individual’s choice reveals the

relative values for the attributes of sites in money terms. To

estimate a site choice model, one gathers data on the actual site

choices made by individuals. Then, usually using some form of

multinomial logit in the context of a random utility model

where trip cost and site attributes serve as arguments in the

utility function, a probabilistic choice model is estimated. As

these parameters are hypothesized to come from individual

utility functions, they readily accommodate welfare analysis.

Site choice models have been useful for valuing quality

changes in site attributes, closure of one or more sites in a

region, and addition of new sites. Given the proliferation of

software that can accommodate discrete choice random utility

models and their ability to address many policy issues in a

defensible and easy-to-understand way, site choice models

have come to dominate the TCM literature.

The final TCM is the KT model. Application of this model

came into practice in the early 2000s. KT models are seasonal,

but they are set in a probabilistic framework that shares many

of the properties of site choice models. In a sense, KT models

bring together the strengths of seasonal and site choice models

in a unified model. However, it has proven to be computation-

ally more cumbersome than the simpler seasonal demand and

site choice models. While its rise has been slow, its use will no

doubt increase in the years ahead.
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Like any area of economic research, there are numerous

theoretical and empirical issues surrounding application of

the TCM. These include, among other things, measuring trip

cost (especially the time cost component), dealing with

multiple-purpose trips, incorporating time interdependence,

treatment of congestion, and defining sites and choice sets.

Each of these issues is briefly addressed following a presenta-

tion of the three models outlined earlier.

Finally, an area of increasing interest in TCM research is

the use of state preference data in combination with revealed

preference travel cost data, for example, data on how people

report they would change trips if water quality were improved

in response to a hypothetical survey question on thismatter. This

enables an analyst to explore unobserved, yet policy-relevant,

changes to recreation sites. Given the more than adequate

coverage of this topic elsewhere in this volume in connection

with several valuation models, it is only briefly addressed in

this article.

 

Seasonal Demand Models

Introduction and Theory

The TCM in its ‘seasonal demand’ form is the traditional vari-

ety. It considers demand for use of a site over an entire season.

It treats trips to a site as the ‘quantity demanded’ and trip cost

as the ‘price.’ This gives a conventional demand function

rn ¼ f pn, psn, znð Þ [1]

where rn is the number of trips taken by individual n to the site

during the season, pn is the price or trip cost for individual n to

reach the site (travel and time cost), psn is the vector of trip cost

substitute sites, and zn is the vector of individual characteristics

believed to influence the number of trips taken in a season

(e.g., age and income). This form may be readily derived from

conventional utility theory or household production theory. It

is usually done using separate budget and time constraints to

explicitly show the opportunity cost of time in trip cost.

Consumer surplus for access to the site for a season is

csn ¼
ðp∗n
p0n

f pn, psn, znð Þdpn [2]

where p0n is the current trip cost to the site and pn
∗ is the ‘choke

price’ – the trip cost at which demand for trips goes to zero for

individual n. If the site were lost, csn is the loss in welfare –

sometimes called ‘access value.’ Analysts sometimes report

mean per trip values that take the form csn/rn. Exact Hicksian

measures of surplus may also be derived as usual.
 
 
 
 
 

Estimation

In estimation, an analyst gathers cross-sectional data on a

sample of individuals for a given season: number of trips

taken to the site, trip cost, and other relevant demand shifters.

Then, via the spatial variation in trip cost (people living at

different distances from the site have different ‘prices’ for

trips), one estimates an equation like eqn [1].

The choice of functional form for estimation has been the

subject of inquiry since the methodology was first developed.
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Earlier functional forms were continuous – linear, log-linear,

log-log, etc. Most modern forms are from the family of count

data models – Poisson, negative binomial, zero-inflated,

hurdle, and so on. Count data models are designed for analyses

with a nonnegative integer-dependent variable and are quite

versatile for handling truncation, large number of zero trips in

the data, and preference heterogeneity. This has made them

popular for seasonal demand function estimation. A Poisson

model is the simplest form. An individual’s probability of

making y trips to a site in a given season is

pr rn ¼ yð Þ ¼ exp �mnð Þmyn
y!

where y ¼ 0, 1, 2, . . . ; where

mn ¼ exp bppn þ bpspsn þ bzzn
� �

[3]

mn is the expected number of trips taken by a person n. It serves

as the ‘demand’ expression for eqn [1], and the Poisson model

puts it in probabilistic form. The parameters in eqn [3] are

estimated by maximum likelihood where each person’s prob-

ability of taking the number of trips actually taken is used as an

entry in the likelihood function. Seasonal consumer surplus

for a person n in the Poisson form is ĉsn ¼ r̂n=� b̂p, where
‘hatted’ values denote estimates. Per trip consumer surplus is

a simple constant ĉsn=r̂n ¼ 1=� b̂p.
An undesirable feature of the Poisson model is an implicit

constraint that the mean and variance of rn are equal. If upon

testing the data fail to support this assumption, it is common

to use a negative binomial model to relax this constraint. As

testing usually shows that equality of mean and variance does

not hold, the negative binomial form is frequently used.

On-Site and Off-Site Samples

One of the more important decisions an analyst makes when

estimating a seasonal demand model is whether to gather data

on-site or off-site. Often, the number of visitors to a particular

recreation site is a small fraction of the general population. If

so, sampling the general population may require a large num-

ber of contacts to form a reasonable sample size of recreational

users. On-site data have the advantage that every individual

‘intercepted’ has taken at least one recreation trip. In this way,

gathering data on-site is often cost-effective. However, there are

at least two disadvantages of on-site data: endogenous stratifi-

cation and truncation. As individuals taking more trips over a

season are more likely to be drawn for inclusion in the sample,

there is oversampling in direct proportion to the number of

trips one takes over a season (e.g., a person taking two trips is

twice as likely to be sampled as a person taking one trip).

Estimation that fails to account for this effect will give biased

parameter estimates for the general population. At the same

time, the analyst never observes individuals taking zero trips in

the season, so there is no direct observation at the ‘choke price’

on the demand function, which is important in the computa-

tion of consumer surplus. Both endogenous stratification and

truncation are easily corrected econometrically. One can show

in the Poisson form that simply using y�1 instead of y in

estimation in eqn [3] corrects for both effects. The correction

is somewhat more complicated in more complex forms such as

negative binomials, but it is possible there as well.
nmental Economics, (2013), vol. 3, pp. 349-358 
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Off-site sampling has the advantage that nonparticipants

are observed. This presumably makes for more accurate estima-

tion of the choke price and hence estimation of consumer

surplus. In somemodels, nonparticipants get special treatment,

wherein the analyst estimates a two-part model: First, the deci-

sion to take a recreation trip or not (the participation decision)

and second, the number of trips to take (the frequency deci-

sion). These models are also members of the count data family

of models and are known as hurdle and zero-inflated Poisson

models. The model uses, more or less, a simple bivariate choice

model for the participation decision and a Poisson model of

one form or another for the frequency decision. If one believes

that participation and frequency are governed by different de-

cision processes, these models are beneficial. A zero-inflated

count model applied in our context has the form

prðrn ¼ 0Þ¼’nðpn,psn,znÞþð1�’nðpn,psn,znÞÞexpð�mnÞ

prðrn ¼ yÞ¼ ð1�’nðpn,psn,znÞÞ
expð�mnÞmyn

y!

[4]

The first equation is the probability of observing a person

take zero trips in the season, and the second equation is the

probability of observing a person taking one or more trips in

the season where mn is the same as shown in eqn [3] and ’n is a

simple bivariate logit model. The first term in the first equation

models the participation decision, the probability of a person

being someone who engages in the type of recreation under

study at all. The second term in the first equation captures

those who engage in the type of recreation under study but

happen to not make a trip in the current season, the probability

of being a participant but taking no trips. The second equation

is the frequency decision for those taking at least one trip, the

probability of taking rn trips in the season given that that

person is a participant. Again, estimation is by maximum

likelihood wherein probabilities from eqn [4] are loaded for

each observation according to actual choices. Seasonal and

per trip consumer surplus in a zero-inflated model have the

forms 1� ’̂nð Þm̂n=� bp and 1/�bp, where the ‘weighting’ term,

1� ’̂nð Þ, accounts for participation.

Valuing Quality Changes and Multiple Site Models

Although the strength of seasonal demand models is not in the

valuation of site attributes, such as water quality or acres of

open space, there are empirical approaches using the model for

this purpose. The most popular approach uses contingent

behavior response data in combination with the trip data. For

example, in addition to asking respondents to report total

number of trips over a season, one also asks them to report

the total number of trips they would have taken ‘if the expected

catch rate of fish at the site had been ½ the current rate’ or ‘if

the width of the beach had been twice its current width.’ Then,

using the newly created contingent trip count, a second TCM

under the new hypothetical conditions is estimated. The area

between this new demand curve and the original – the differ-

ence in consumer surplus estimates in the two conditions – is

an estimate for the value of the attribute change. These demand

models are typically estimated simultaneously and often with

logical parameter and error term restrictions. This approach

accepts the condition of ‘weak complementarity’ in the
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behavior model – that a person receives utility from the attri-

butes of a site only by visiting the site.

It is also possible to observe demand function shifts using

actual trips to several different sites that vary in attribute qual-

ity. ‘Pooling’ or ‘stacking’ multiple sites in this way allows the

analyst to enter site attributes in eqn [1], estimate parameters

for site attributes, and then use that estimate to calculate wel-

fare as described in the contingent behavior case above. These

cross-sectional models have variously been called varying

parameter models, pooled models, and stacked multiple site

models. The basic problem underlying these models is that

they fail to integrate site choice across the set of sites under

consideration in a meaningful way. For this reason, these

models have largely fallen out of favor, although applications

do still appear from time to time in the published literature.

The final formof the seasonal demandmodel to consider is a

multiple-site model in which a system of count demand equa-

tions allowing for substitution across sites and utility theoretic

restrictions is developed. There are a number of applications

along these lines, but this has largely been confined to settings

with a few sites and has focused on access values instead of

valuing site attributes. For the most part, these models have

given way to site choice random utility models and KT models

as a way of integratingmany sites into the decisionmodel and to

conduct welfare analysis for changes in site attributes. The KT

model is really the state-of-the-art demand system model and is

presented in the section ‘Kuhn–Tucker Models.’
Site Choice Models

Introduction

The most commonly used TCM in the literature today is a

model of recreation site choice based on the random utility

theory. Known as the random utility maximization (RUM)

model, it has proven to be quite versatile for measuring access

value (e.g., opening or closure of one or more recreation sites)

and quality changes at one or more sites (e.g., improved water

quality, wider beaches, and increased bag rate for hunting). Its

appeal hinges on its ability to handle many sites and substitu-

tion among sites in a plausible and easily estimable way. The

behavioral basis underlying the model is also easily under-

stood and intuitive making it all the more attractive for policy

analysis and damage assessment.
Theory

The time frame in a site choice model is a single choice occa-

sion, usually a day, in which an individual makes one recrea-

tion trip. The individual is assumed to face a set of S possible

sites for a trip. Each site i (i¼1,2, . . .,S) is assumed to give

individual n (n¼1,2, . . .,N) some utility Uin on a given choice

occasion. The utilities are assumed to be a function of the trip

cost of reaching the site and attributes of the site, such as

natural amenities, water quality, size, and access. As before,

trip cost includes travel and time cost.

Letting pin be trip cost, qi and ~qi be vectors of site attributes

that may or may not share some of the same terms, and ~zi be a

vector of individual characteristics, site utility for person n at

site i is
ironmental Economics, (2013), vol. 3, pp. 349-358 
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Uin ¼ btcpin þ bqqi þ bqz~qi~zn þ ein [5]

Typically, site utility is linear as shown or some form with a

nonlinear transformation of characteristics (such as the log of

beach width) that maintains linearity. The coefficient on trip

cost is the marginal utility of income as it describes how site

utility changes with a decrease in income if a trip is taken. Site

utility often includes site-specific constants in the vector qi
capturing ‘average’ differences across sites missed by the vector

of attributes. The vector ~zn is interacted with ~qi to capture

individual heterogeneity. For example, ‘boat ramp’ as a site

attribute in ~qi might be interacted with ‘boat ownership’ as an

individual characteristic in ~zn, if one believes that boat ramps

only matter to people who own a boat. Individual characteris-

tics cannot be entered alone because they are invariant across

sites. Individual characteristics may, however, be interacted

with a site-specific constant if there is a compelling reason

that an individual characteristic affects a person’s proclivity to

visit one site over another. The error term, ein, captures site

attributes and individual characteristics that influence site

choice but are unobserved by the analyst.

On any given choice occasion, an individual is assumed to

choose the site with the highest site utility giving trip utility of

the form

Vn ¼ max U1n;U2n; :::: ;USnð Þ [6]

Trip utility, Vn, is the basis for welfare analysis in the RUM

model. It is used to value loss or gain of sites (access values)

and changes in site attributes. For example, consider an oil spill

that closes sites 1 and 2. Trip utility with the closures becomes

Vclosure
n ¼ max U3n;U4n; :::: ;USnð Þ [7]

where sites 1 and 2 have been dropped from the choice set. Trip

utility declines from Vn to Vn
closure.

A similar expression can be generated for a change in site

quality at one or more sites. Suppose the water quality at sites 2

and 3 is improved through some regulation. If so, trip utility

for person n becomes

Vclean
n ¼ max U1n;U

*
2n;U

*
3n;U4n; ::: ;USn

� �
[8]

where U*
2n and U*

3n denote the now higher utility due to the

improved quality. In this case, trip utility increases from Vn to

Vn
clean. In both cases, the change in utility is monetized by

dividing the change by the coefficient on trip cost �bp, which
is our marginal utility of income, in eqn [5]. This gives the

following compensating variation (also equivalent variation)

measures for changes in trip utility

wclosure
n ¼ Vclosure

n �Vn

� �
=�bp and

wclean
n ¼ Vclean

n �Vn

� �
=�bp

[9]

These are changes in welfare on a per trip per person basis.

 

 
 
 
 
Estimation

Because the error term, ein, on each site utility is unknown to

researchers, the choice is treated as the outcome of a stochastic

process in estimation. By assuming some explicit distribution

for the error terms in eqn [5], each person’s probability of
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visiting a site can be expressed in some form. The simplest is

to assume that the error terms are independently and identi-

cally distributed (iid) type 1 extreme value random variables.

This gives a closed form expression, a multinomial logit, for the

choice probabilities. Each person’s probability of choosing any

site k from the set of S sites in the multinomial logit from is

prn kð Þ ¼
exp btcpkn þ bqqk þ bqz~qk~zn

� �
P

i2S exp btcpin þ bqqi þ bqz~qi~zn
� � [10]

The parameters are estimated using data on actual site

choices and maximum likelihood with the logit probabilities

in eqn [10] – so a person’s entry into the likelihood function is

the probability of visiting the site actually chosen on a given

choice occasion. Because researchers proceed as though

choices are the outcome of a stochastic process, trip utility in

eqns [6]–[8] is also stochastic. Expected trip utility is used as an

estimate of Vn in empirical work. Using the assumption of iid

type 1 extreme value distributions for the error terms gives each

individual’s expected trip utility as

E Vnð Þ ¼ E max U1n;U2n; . . . ;USnð Þf g

¼ ln
XS
i¼1

expðbppin þ bqqi þ bqz~qi~znÞ
( )

þ C [11]

i¼1, where C is some unknown additive constant. It is a

manifestation that the absolute level of utility is unmeasurable,

and as it is shared and constant across all expected trip utilities,

it is of no practical relevance in welfare analysis. E(Vn) is often

referred to as the ‘log-sum’ and is the empirical form of Vn used

in welfare analysis. The steps in such an analysis are straight-

forward: estimate the parameters of site utility, use the param-

eters to construct expected trip utilities with and without some

resource change using eqn [11], and finally compute per trip

losses per person substituting E (Vn) for Vn in eqn [9] and with

the estimates of �bp used to monetize the change in expected

utility (note that C discussed above drops out when one dif-

ferences the equations). In some cases, rarely, however, re-

searchers will consider site utilities that are nonlinear in trip

cost, allowing for nonconstant marginal utility of income and

empirical forms of eqn [9] that are not a closed form. In this

case, welfare is calculated using numerical methods.

One of the major drawbacks of the multinomial logit model

is the restrictive way in which substitution occurs. Since site

substitution is the pathway through which welfare effects are

captured, it is important to handle it in as realistic a way as

possible. The multinomial logit model assumes that the closure

or decline in quality at one or more sites leads to a proportional

increase in the visitation to all other sites – their shares remain in

fixed proportion. This property, known as the independence of

irrelevant alternatives, is usually unrealistic. For this reason,

economists have turned almost entirely to alternative forms

that allow for more realistic patterns of substitution. This is

achieved, at least in a stochastic sense, by allowing for correlated

error terms across the sites in eqn [5]. There are two common

methods that allow for such correlation: nested andmixed logit.

These forms dominate the travel cost random utility model

literature. Both are generalizations of the multinomial logit

model outlined above and follow the same steps outlined there.
nmental Economics, (2013), vol. 3, pp. 349-358 
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The nested model has been used since the introduction of

travel cost RUM models. Nested models place sites that share

unobserved characteristics in a common ‘nest’ under the as-

sumption that they serve as better substitutes for one another

than sites outside the nest. It also renders a closed form choice

probability similar to the conditional logit model, but it in-

cludes a new parameter for each nest that captures the degree of

substitution among the sites within that nest. Researchers often

nest sites by proximity (e.g., grouping sites in the same region

together), resource type (e.g., grouping lakes and rivers in

separate nests), and purpose (e.g., grouping trout and bass

fishing trips separately). The option of purpose actually

expands the choice model to include than just site choice.

The mixed logit model (or random parameters logit) is

a more flexible approach for enriching the patterns of substitu-

tion. It allows for more, and overlapping, substitution structures

and can also be easily configured to mimic what a nested logit

model does. The mixed logit model induces correlation among

the error terms by allowing parameters on the site attributes to

have random components or dispersion terms. The random

components then become a part of the error term in site utility,

and this, in effect, causes correlation among site utilities. Con-

sider an example: A site utility includes a dummy variable for

‘state park’ to distinguish community-run beaches from state-

level park beaches. As state parks are likely to share unobserved

attributes, one might estimate the model with a random param-

eter on ‘state park’. If so, the estimated dispersion term, the

variance, on ‘state park’ would cause all the sites sharing the

attribute to be correlated as their shared error component

would move in concert. The larger the dispersion, the greater

the degree of correlation and hence substitutability among the

state park sites. This, in turn, is implicitly captured in the welfare

analysis.

Because models are estimable with a large number of ran-

dom terms, the possible patterns of correlation are almost

endless, making mixed logit an obvious choice for the recrea-

tion applications with welfare analysis. Unlike themultinomial

and nested logit models, the mixed logit model does not yield a

closed-form choice probability. Instead, it uses simulated prob-

ability methods to solve for choice probabilities that present

themselves as integrals and yields estimates for the mean and

dispersion of designated parameters. In some circumstances,

the disturbance term is used to interpret the degree of taste

heterogeneity in the sample. In this case, the greater the disper-

sion, the greater the unobserved heterogeneity in the sample.

Welfare analysis with mixed logit uses a log-sum term exactly

like eqn [11], but it requires the use of a simulated log-sum as

some or all of the parameters in the equation vary by some

known distribution. Due to its flexibility and now widespread

presence in standard econometric packages, mixed logit has

become extremely popular in travel cost random utility model

applications.

Finally, like the seasonal demand model, the major deci-

sion of on-site versus off-site data affects the econometrics used

to estimate the model. Again, on-site sampling may be a cost-

effective way of obtaining trip data but the data must be

adjusted to account for the relative amount of time spent

sampling at each site; otherwise, the choice probabilities will

reflect in part (perhaps in large part) the relative extent of

sampling at each site instead of the relative preferences for

 

Encyclopedia of Energy, Natural Resource, and Env
 

each site. To correct for on-site sampling bias in a meaningful

way, one needs to know, or at least should be able to estimate,

the proportion of trips to each site in the population. This

population proportion can be used to adjust or weigh the

sample choice probabilities in estimation. An alternative solu-

tion is to design a sampling strategy that applies equal sam-

pling pressure across all sites, independent of their popularity.

Off-site data are ‘cleaner’ in the sense that no such adjustment

is needed.

Seasonal Forms

Site choice models, at their core, are occasion-based, centering

on an individual trip. Oftentimes, analysts are interested either

in the seasonal implications of a policy change or in resource

changes that may engender changes in the number of trips

taken (e.g., fewer fishing trips if catch rates decline). The site

choice model described earlier disallows taking fewer or more

trips over a season or no trip on a single choice occasion as the

model is conditioned on taking a trip.

There are essentially two methods used to modify the basic

choice model to make it seasonal and incorporate the possi-

bility of adjusting the number of trips taken over a season: a

repeated discrete choice model with a no-trip alternative and a

linked seasonal demand model.

The repeated choice model simply adds a no-trip utility to

the individual’s choice. This typically takes the form

U0n ¼ d0 þ dzzn þ e0n [12]

where zn is a vector of individual characteristics believed to

influence whether or not a person takes a trip on a given choice

occasion (zn usually different from ~zn). This might include age,

family composition, years engaged in recreation, and so on. Each

person now has Sþ1 choices on each choice occasion: visiting

one of the S sites or taking no trip. The model is made ‘seasonal’

by simply repeating it for every choice occasion in the season,

where the choice probabilities now include no-trip as one of the

alternatives. The log-sum becomes an expected choice occasion

utility instead of expected trip utility with the form

EðVnÞ¼ E max U0n,U1n, . . . ,USnð Þf g

¼ ln exp dzznð Þþ
XS
i¼1

expðbppinþbqqiþbqz~qi~znÞ
( )

þCn [13]

Per trip welfare changes are calculated as before (see eqn [9] and

discussion following eqn [11]) but become per choice occasion

per person. Seasonal estimates of welfare change are simply per

choice occasion values multiplied by the number of choice occ-

asions in a season, Wn¼M �wn
co, where wn

co denotes the per

choice occasion value andM the number of choice occasions.

Usually, an analyst will have data on trips over an entire

season without knowing the specific date for each trip. If so, if a

person took Tn trips, onM choice occasions, each of the Tn trips

would enter the likelihood function as the probability of tak-

ing a trip and each of the M�Tn no-trips would enter as the

probability of taking no trip. This expands the data set consid-

erably in estimation. In nested logit, the S sites are usually

placed in a nest separate from the no-trip choice. In mixed

logit, no-trip utility usually includes its own alternative-specific
ironmental Economics, (2013), vol. 3, pp. 349-358 
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constant as shown in eqn [12] and will be treated as a random

parameter. It is also desirable to allow for correlation of utili-

ties across choice occasions in repeated models in estimation.

The alternative approach for introducing a seasonal dimen-

sion into a site choice model is a pseudo–seasonal demand

model that ‘links’ the number of trips taken over a season with

the expected trip utility from the site choice model. The linked

model has the form

Tn ¼ f E Vnð Þ=� bp, zn
� �

[14]

where Tn is the number of trips taken by a person n over the

season, E(Vn)/�bp is the expected trip utility estimated in a site

choice model (eqn [11]) divided by the estimated coefficient

on trip cost from the same model, and zn is a vector of indi-

vidual characteristics. E(Vn)/�bp is the expected value of a

recreation trip for person n on any given choice occasion.

One would expect the number of trips a person takes to

increase with the expected value of a trip. In this way, the

model can be used to predict how the number of trips over a

season changes with changes in site characteristics or the loss/

addition of sites in the choice set. For example, the expansion

of designated open space at one or more recreation sites would

increase predicted E(Vn) from the site choice model, which, in

turn, would increase the number of predicted trips in a linked

model, thereby picking up seasonal adjustments in the number

of trips taken. The linked model is typically estimated using a

count data model, either stepwise or simultaneously with the

site choice model. Seasonal changes in welfare in Poisson or

negative binomial form can be shown to be DT̂n=ĝ for person
n, where DT̂n is the change in trips due the resource change

and ĝ is the parameter estimate on expected trip utility in the

linked model.

The model is admittedly ad hoc in the sense that it is not

built from a consistent utility theoretic framework at the site

choice and trip demand levels. Nevertheless, it has proved to be

quite versatile and is usually easy to estimate. The repeated

choice model can be written in a linked form as f(.)¼M �
(1�pr(no-trip)), where M is the number of choice occasions

in a season and pr(no-trip) is the probability of taking no trip

in the repeated choice model. In this way, the two models,

while ostensibly different, can be seen as simply different

functional forms for the seasonal component of a site choice

model.

 

 
 
 
 
 

Kuhn–Tucker Models

The KT model is the most recent of the travel cost models. The

KT model in some ways brings together the best attributes of

the seasonal demand and site choice models by modeling site

choice and total trips over a season in a utility-consistent way.

Although introduced into the recreation demand literature

over 10 years ago, it has not seen particularly wide use, espe-

cially when compared with the site choice models mentioned

in the previous section. This seems to be largely due to the

complexity and computation difficulties one often encounters

when estimating a KT model. Nevertheless, the KT model is at

the cutting edge of travel cost demandmodeling and is likely to

see increased use in due time.
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In the KT model, individuals are assumed to maximize a

seasonal direct utility function subject to a usual budget con-

straint. To ease notation, let us assume one site for now. An

individual’s choice is defined by

max
r, a

u r, a; q, z, e, gð Þf g s:t: p�r þ a ¼ y, r � 0 [15]

where r is the number of trips taken to the site, a is a numeraire

good with price one, q is a vector of site attributes, z is a vector

of individual characteristics, e is an error term, and g is a

parameter vector to be estimated. The use of the subscript n

denoting individuals has been suppressed. In the budget

constraint, there are p trip costs and y income. The KT first-

order conditions for utility maximization then are

@u r, y � p�r; q, z, e, gð Þ=@r
@u r, y � p�r; q, z, e, gð Þ=@a � tc; r � 0;

r� @u r, y � p�r; q, z, e, gð Þ=@r � tc�@u r, y � p�r; q, z, e, gð Þ=@a½ � ¼ 0

[16]

These are the usual complementary slackness conditions

that allow for both corner (zero trips) and interior (nonzero

trips) solutions. The trick to making the KT model operational

is to select a form of the utility function that allows one to

rewrite the conditions in eqn [16] as

e � gðr, p, y, q, z, gÞ; r > 0; r�½e� gðr, p, y, q, z, gÞ� ¼ 0 [17]

Equation [17] makes the model empirical because it allows the

analyst to write realizations from a data set (number of trips

taken by respondents) in probabilistic terms that can be en-

tered into amaximum likelihood function for estimation. For a

given individual n, if rn¼0, then en<gn, whereas if rn>0,

en¼gn. So, if £ has some known distribution, an explicit form

for the probabilities for each observation can be used in esti-

mation. Some applications, for example, have used iid type 1

extreme value error terms, such as those used in the multino-

mial logit. The estimated parameters ĝ are then used to

construct the fitted direct utility functions for each individual,

which, in turn, may be used to estimate exact measures of

surplus for some hypothetical changes in site attributes. The

analog to the expected trip utility in eqn [7] for the RUMmodel

is the maximum indirect seasonal utility corresponding to the

problem in eqn [15] or

vn ¼ max v1n p, y, q, z, e, gð Þ1, v0n p, y, q, z, e, gð Þ� �
[18]

where v1n is the indirect seasonal utility conditioned on taking

trips and v0n is the indirect seasonal utility of not taking a trip.

Eqn [18] simultaneously defines whether or not a person is a

participant and, if so, how many trips are taken over the entire

season. In welfare analysis for a change in site attributes, com-

pensating variation is just the value of DWn that solves

max v1n p, y, x, z, e, gð Þ1, v0n p, y, x, z, e, gð Þ� �
¼ max v1n p, y � DWn, x*, z, e, gð Þ1, v0n p, y � DWn, x*, z, e, gð Þ� �

[19]

As the error term e is random, the welfare change DWn is

also random. Also, because each element in eqn [19] is itself a

maximum value function, there is no closed form solution to

DWn like the log-sum. It must be solved numerically using
nmental Economics, (2013), vol. 3, pp. 349-358 
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repeated draws on the assumed distribution for the error term.

Importantly, the outcome of this process allows each individ-

ual in the sample to adjust visits to the site and their frequency.

When more than one site is included in the model, eqn [18]

includes 2S available combinations of sites that might be visited

over the season (including no trip), and each combination has

an optimal number of trips for its included sites. In this way,

attribute changes and site closures can lead to adjustments in

the sites visited and the number of trips taken to each site.

As noted at the outset, due to the computation complexity

of the KT model, it has not been used as widely as expected.

Also, to make it operational, the form of the utility functions

used has been rather restrictive. Still, unlike the seasonal

demand and site choice models, the KT model provides utility

theoretic consistency between site choice and trip frequency

and allows for substitution among sites in the traditional

(through cross-price terms) and stochastic (through error

term correlation) ways. The model has also been applied in

settings with a large number of sites and with numerous site

characteristics.

 

Issues and Complications

This section addresses several perennial topics that complicate

estimation and, in some cases, interpretation and use of the

results in TCMs. These include multiple-purpose and overnight

trips, measuring time cost, intertemporal substitution, choice

set formation, and congestion.
 
 
 
 
 

Multiple-Purpose and Overnight Trips

Sometimes the purposes of a trip will extend beyond recreation

at the site. For example, a person may visit family and friends,

or go shopping, or even visit more than one site on a recreation

outing. In these instances, the trip is producing (i.e., the trip

cost is buying) more than single-site recreation, and it is no

longer clear whether the simple travel cost paradigm applies.

For this reason, researchers often confine their analysis to

day trips where multiple purposes are less likely to occur. This

is sometimes done by either focusing on trips made within a

day’s drive from a person’s home (assuming that these will

largely be day trips) or by identifying day trips through a survey

question. In some cases in the survey, the analyst identifies

single-purpose day trips or day trips where recreation is the

primary purpose. Sometimes, ‘other purposes’ are handled as

an attribute of a site. For example, nearby shopping may be

variable in a beach choice model. This, in effect, expands the

nature of the recreation experience.

Expanding the model to overnight trips is problematic

for a number of reasons. There are more costs to estimate

(e.g., lodging at all sites). Length of stay can vary significantly

over the sample (e.g., some people stay one night, others for

2 weeks.) The relevant choice set is likely to be considerably

larger. For example, for a household in the United States, the

set of substitutes for a week-long beach vacation may include

all beaches in the United States and even beyond. Also, if

people use long trips as a ‘getaway,’ nearby sites with low trip

cost may be undesirable. Greater trip cost then, at least over

some range, would be viewed as a positive attribute,
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complicating ‘price’ in the simple TCM. Finally, many over-

night trips will be multiple-purpose/multiple-site excursions

wherein the individual transits from one site to the next obvi-

ously straining the TCM paradigm.

In cases where individuals visit multiple sites on a single

trip, one of the more promising approaches is to redefine a site

such that there are ‘single-site’ sites and ‘multiple-site’ sites and

then proceed with the logic of the TCM. Trip cost would be

recalculated for a site with multiple sites by accounting for the

costs of visiting all the sites on one trip. In a site choice model,

one can think of this as a portfolio choice problem wherein

each person chooses a portfolio of sites on any given trip.

Characteristics of the portfolio would simply be alternative-

specific constants for each site in the portfolio.
Measuring Travel and Time Costs

Trip cost is measured as the sum of travel and time cost plus

any other expenses necessary to make the recreation trip pos-

sible. Travel cost includes fuel and depreciation of the owner’s

vehicle. In some instances, analysts will ignore the depreciation

costs as inconsequential. In either case, travel cost is typically

measured using round-trip distance from home to site times

some standard cost per mile of operating a vehicle. Distance

from a person’s home to the site is usually calculated using a

standard over-road software such as PC Miler. It should be

noted that this has to be done to all sites in a persons’ choice

set. An alternative is to use an individual’s reported trip cost

from a survey question. This has the advantage of being the

‘perceived’ cost but the disadvantage of measurement/report-

ing error in the survey and the complication of usually having

it reported only for the site actually visited by the respondent.

Measuring the time cost component is a thorny issue. In a

world where everyone has a continuous labor-leisure budget

constraint, the wage rate is an ideal value of a person’s oppor-

tunity cost of time for a recreation trip. But, many (most?)

individuals simply do not fit this prototype. If a person is a

retired person, a student, a homemaker, an unemployed per-

son, or is paid a fixed annual salary to work 40 h per week,

there is no clear forgone wage and the opportunity cost of time

is not so obvious. There are essentially two ways economists

have handled this issue: using a ‘wage-analogy’ or inferring the

value of time directly in the recreation choice.

The ‘wage-analogy’ is ad hoc but is the most common. One

simply divides a person’s annual income by the number of

hours worked in a year (usually 2000) and uses this as a ‘wage.’

As people are not on the continuous labor-leisure budget

constraint described earlier, this estimate is only loosely tied

to theory. In the final calculation, analysts typically use one-

third of this calculated wage as the estimated value of time.

There is evidence from a number of sources that this is a

reasonable adjustment. The mode choice literature in transpor-

tation studies, for example, supports this adjustment. Another

reason given for using less than the full wage is that the trip to a

recreation site itself may be of value. A nice ride through the

country side, for example, may be a desirable part of the trip.

For these reasons, albeit highly imperfect, the tradition of one-

third of the wage continues to be used in applied work.

Inferring the value of time directly in a travel cost model is

done by entering out-of-pocket travel cost and time separately
ironmental Economics, (2013), vol. 3, pp. 349-358 
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in the model. In the random utility model in eqn [5], bppin is

replaced with btctcinþbtmtmin, where tcin is the out-of-pocket

travel cost measured in money terms and tmin is the simple

round-trip time. In this way, the researcher is not explicitly

placing an ex ante value on time. Instead, time is being

accounted for in the analysis without prior explicit restriction

and can be valued implicitly as btm/btc, the relative contribution
of travel cost and time to a person’s utility. Heterogeneity in the

value of time can be accounted for in the usual way by interact-

ing tmin with attributes of individuals one believes may govern

differences (e.g., income or not working full-time). Another

strategy along these same lines is to identify in advance people

who work for an hourly wage and have a flexible work schedule

and then value their time directly with the wage while treating

only those not working for an hourly wage, as previously

described. The chief drawback of inferring time value within

the analysis is that the tcin and tmin are often highly correlated

as both are determined in part by one’s distance from a site.

Despite some other creative efforts to value time, the two

methods outlined continue to dominate applications in the

literature. Neither is particularly satisfying, but there has been

no compelling reason to abandon either in favor of a new

approach.

 

 
 
 
 
 

Intertemporal Substitution

The bulk of the literature and most of the active research on

TCMs ignore any dynamic aspect of decision making, yet it is

hard to deny that it is important. Dynamic elements allow

people to substitute sites over time and allow experiences

early in the season or perhaps in the last season (such as a

good catch rate of fish) to affect the choice of site and number

of trips in the current season. Individuals may even base cur-

rent site choices on expectations about future trips.

The repeated site choice model is, in principle, set up for

just such an analysis as it considers an individual’s trip choice

day by day over a season. Nevertheless, few applications con-

sider interdependence in this framework. The typical analysis

treats each trip choice as independent of the previous and

upcoming choices and takes no account of temporal character-

istics (such as weather and day of the week). There are two

good reasons for this. First, the data are more difficult to

collect. To gather trip data by date of trip usually requires a

diary to be maintained by the respondents for the recall to be

accurate. This means repeating survey administration

(perhaps, monthly throughout the season) or continual re-

minders to complete a diary sent early in the season. This

increases the cost of the survey and leads to sample attrition.

Second, there is an inherent endogeneity in trip choice over time.

Unobserved factors affecting trips in period t are no doubt pre-

sent in periods t�1 and tþ1. If so, this feedback needs to be

dealt with by purging the explanatory variables of any historical

or future content (most notably, the lag of past trips to the site

used as explanatory variables) of their endogeneity. The instru-

mental variables needed tomake this possible have been elusive.

There have been a few efforts to build time interdependence

into site choice models. As just noted, one way is to use a

measure of past trips to a site as an explanatory variable in

a TCM. For example, some have considered a simple dummy

variable for whether or not a person has visited the site in the
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previous season or the current season as an explanatory vari-

able in site utility in eqn [5]. A positive coefficient would imply

‘habit formation’ and a negative coefficient, ‘variety seeking.’

Other types of time-interdependent variables have or might

include time since previous trip to a site, quality of experience

on previous visits to a site, or known upcoming visitation

plans. Research along these lines has been limited to a few

exploratory studies and has largely ignored the issue of

endogeneity; as such, it has not become a standard method

in the literature. Most analyses continue to use data gathered

without date-specific information and simply allow correlated

errors over the season. Interestingly, seasonal demand models

and the KT model implicitly estimate diminishing marginal

utility of trips to individual sites within a season and, at least in

this way, if it exists, implicitly capture the extent of habit-

forming versus variety-seeking behavior in the sample.

A fully dynamic model where choices over the season are

the result of solving a dynamic programming problem has

been estimated, but given the computational difficulty, this

has only been possible for a single-site discrete choice model

(‘go – don’t go’ each day of the season).

Finally, there have been efforts that combine contingent

behavior data with trip choice data to infer intertemporal

effects. For example, simply asking people what they might

do if a site had been closed or a catch rate of fish at a site had

been lower and then allowing for trip and site choice (substi-

tution) in response to be in different time periods within or

across seasons provides a data set with some time interdepen-

dence. These types of data have been exploited by allowing the

response information to serve as alternative sites, but have

fallen short because of not explicitly accounting for the dynam-

ics inherent in the choice.

The evidence to date based on a small collection of studies

and simple common sense is that accounting for intertemporal

substitution and dynamics makes for better models of behav-

ior and is likely to have a large impact on measures of welfare.
Choice Set Formation

When forming the relevant choice set for a multiple-site TCM

study, the usual approach is to begin with the sites of policy

significance and then expand it to include a reasonable set of

substitute sites without reaching a number so large that esti-

mation is infeasible. It is often driven by arbitrary political or

geographic boundaries and, in some instances, leads to highly

aggregated sites. In some cases, counties or even regions larger

than counties can serve as individual sites. Most recent studies

have used less aggregated sites, such as individual lakes, rivers,

parks, or beaches. As a general rule, the more homogeneous

the sites, the less the error faced in aggregation. In practice, it is

best to err on the side of less aggregate sites.

The model being used can also be a factor in choice set size.

Seasonal demand and KT models are nearly always estimated

with fewer than ten or so sites, often with as few as three or

four. It has, however, been shown that KT models can be

estimated with a significantly larger number of sites. RUM-

based site choice models are usually used when the number

of relevant substitutes gets large. In some cases, this can be in

the hundreds or even thousands. With certain restrictions ap-

plied to the model, it is possible to estimate a TCM using
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randomly drawn alternatives as a proxy for the full choice set,

in effect, allowing for extremely large choice sets.

Most applications use choice sets defined by the analyst, but

there is an ongoing debate about constructing and using choice

sets defined by the respondents; that is, sites people are aware

of and consider in making a choice. The difficulty with using

choice sets formed by individuals is that the choice process that

individuals use to form the narrow set of considered sites is

part and parcel of the process of choosing the best site. Put

differently, sites falling outside the set of considered sites are

simply those with low utility and should be included in the

analysis. If, on the other hand, individuals are unaware of sites,

there is a reasonable argument for dropping them from the

choice set in estimation.

 

 
 
 

Congestion

Congestion readily comes to mind when ones thinks of recre-

ation sites. Given the growth in population and income and

the decline in transit cost over time, recreation sites naturally

see more use. In some cases, congestion can become a major

policy issue. While the theory of incorporating congestion into

TCMs is well understood, as is the idea of an efficient or

optimal congestion at a site, it is difficult to incorporate its

effect empirically, and there have been only a handful of

studies that have attempted to do so. The difficulty is captured

in a famous Yogi Berra quote about a favorite restaurant of his:

“Nobody goes there anymore, it’s too crowded.” Observing

many people at a site signals its desirability and hence high

probability of visitation. At the same time, it may have gotten

so popular that visitation is actually somewhat lower than it

would have otherwise been but for congestion. How does one

tease out the latter effect? An obvious start is to put some

measure of congestion on the right-hand side of a seasonal

demand or site choice model. But almost any measure one

considers is correlated with excluded unobservables that influ-

ence individual demand – the same factors that effect individ-

ual demand (make a site desirable) also effect congestion.

There is an inherent endogeneity problem, and sorting out

the partial effect of congestion, without some cleaver instru-

ments, is no easy task.

There are a few instances in the site choice random utility

literature where instrumental variables have been successfully

introduced to identify congestion effects. The instruments are

still somewhat dubious (e.g., weather conditions, day of the

week), but they have passed statistical tests. An alternative

strategy, also appearing in the literature, is the use of some

form of contingent behavior, combining stated and revealed

preference data, where the stated component constitutes

a response to some hypothetically introduced level of conges-

tion. The effects of accounting for congestion in both

the revealed preference/instrumental variable approach and

the contingent behavior approach show that accounting

for the effects of congestion are important to welfare analysis.

 
 

Conclusions

The TCM has been in use for over 50 years. It has grown in

sophistication and use along with the growth in applied
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microeconometrics and applied welfare economics. It is the

mainstay of nonmarket valuation for recreational uses of the

environment.

This article has presented the three primary forms of

the model in use today: seasonal demand, site choice, and

KT. The seasonal demand models are the traditional forms

and are best used in applications where there is a single or

a few sites of interest, substitution outside this set is of limited

relevance, and the focus is on access values. In some

circumstances, cases can be made for using the model to

value site attributes. However, the preferred model when the

number of sites in question is large and/or quality changes at

the sites are of interest is the site choice model using random

utility theory. The site choice RUM model is the dominant

model in the literature due to its flexibility and relative ease

in application. The third model, the KT model, brings together

the best of the seasonal and site choice models in a theoreti-

cally consistent way and may very well be the model of the

future. However, because of its computational complexity, it

has not been used widely.

The TCM certainly has its share of issues and complications.

The major issues are essentially the same set confronting the

model since its inception: measuring the value of time, dealing

with multiple-purpose and overnight trips, accounting for

intertemporal substitution, and forming the relevant choice

set for estimation. Despite its flaws and blemishes, research

and application of the TCM appear to be robust and poised for

still more growth.
See also: Allocation Tools: Environmental Cost-Benefit Analysis;
Media: Water Pollution from Industrial Sources; Valuation Tools:
Benefit Transfer; Contingent Valuation Method; Hedonics.
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