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SUMMARY

Power calculations are derived for matched case-control studies in terms of the probability p, of
exposure among the control patients, the correlation coefficient ¢ for exposure between matched case
and control patients, and the odds ratio ¢ for exposure in case and control patients. For given Type
I and Type II error probabilities @ and S, the odds ratio that can be detected with a given sample size
is derived as well as the sample size needed to detect a specified value of the odds ratio. Graphs are
presented for paired designs that show the relationship between sample size and power for e = .05,
g = .2, and different values of po, ¢, and ¢. The sample size needed for designs involving M matched
control patients can be derived from these graphs by means of a simple equation.

These results quantify the loss of power associated with increasing correlation between the exposure
status of matched case and control patients. Sample size requirements are also greatly increased for
values of po near 0 or 1. The relationship between sample size, y, ¢, and p; is discussed and illustrated

by examples.

1. Introduction

This paper presents a new series of isographs for power calculations and sample size
estimation from matched 2 X M case-control studies. The question of sample size
determination in matched 2 X 2 tables has been considered by Schlesselman (1982) and
more recently by Parker and Bregman (1986) and Connett, Smith, and McHugh (1987).
All of these authors express their sample size calculations in terms of the true odds ratio
that is to be detected with a given power and Type I error probability level. Schlesselman
estimates the number of discordant case-control pairs and then assumes independence in
the exposure probabilities for cases and controls to obtain total sample size estimates.
Connett et al. (1987) use an unconditional approach that requires an estimate of the
probability that a case-control pair will have an unexposed case patient and an exposed
control patient. When such an estimate is unavailable, they also assume independence in
the exposure probabilities of cases and controls. This assumption is unrealistic because in
most matched studies, exposure in a case patient is correlated with exposure in his matched
control. Also, estimating the probability of a discordant pair can be very difficult in the
absence of pilot data. Parker and Bregman (1986) avoid the independence assumption by
permitting the user to specify a heterogeneous exposure distribution in different subgroups
of the control population. Although this approach is a great improvement over previous
methods, it is sometimes difficult to make plausible estimates of this exposure distribution.
Parker and Bregman also assume that the disease incidence in unexposed patients does not
vary with different values of the matching variables. This assumption is often unrealistic.
For example, in an age-matched study of smoking and lung cancer it would imply that
lung cancer incidence among nonsmokers does not increase with age.

Key words: Case-control studies; Matching; Sample size estimation; Power calculations.
1157



Power Calculations for Matched Case-Control Studies

William D. Dupont
Biometrics, Vol. 44, No. 4. (Dec., 1988), pp. 1157-1168.

Stable URL:
httn:/links.jstor.org/sici?sici=0006-341X%28198812%2944%3A4%3C1 157%3APCEMCS%31:2.0.C0%3B2-9

Biometrics is currently published by International Biometric Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at

htp:/www jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
htip://www.jstor.ora/journals/ibs.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Mar 26 16:32:58 2008



1158 Biometrics, December 1988

Miettinen (1968), Duffy (1984), and Connor (1987) have also considered the problem of
power calculations for matched tables. In these papers the alternative hypothesis is expressed
in terms of the difference between the probabilities of obtaining the two different types of
discordant case—control pairs. For epidemiologic studies it is perhaps more useful to express
power calculations in terms of odds ratios.

This paper gives the derivation of the odds ratio that can be detected with power 1 —
given a two-sided Type I error probability a, N case patients, M/ matched control patients
per case, the probability of exposure p, among control patients, and the correlation
coefficient ¢ for exposure in matched pairs of case-control patients. The corresponding
number of case patients needed to detect a given odds ratio ¢ with power 1 — 8 and Type
I error probability « is also derived. A major advantage of this approach is that power
calculations are expressed directly in terms of the correlation coefficient for exposure
between matched case and control subjects and the prevalence of exposure in the control
group. This facilitates the drawing of isographs, which greatly simplify the task of sample
size estimation in matched case—control studies, and which permit epidemiologists to gain
an insight into the relationship between power, sample size, and these other variables.

2. Notation and Assumptions

Consider a population of case patients with some disease and control patients who do not
have this illness. Some of these patients have had prior exposure to a risk factor of interest,
and all subjects can be classified by different levels of a variable that confounds the
association between the risk factor and the disease. We wish to estimate the odds ratio ¥ of
developing the disease in exposed and unexposed patients who have equal values of the
confounding variable (see Breslow and Day, 1980). To do this we first select a random
sample of N case patients. We then stratify the population by the confounding variable and
assume that i is constant across all strata. For each selected case patient we randomly
sample M matched control patients from the same stratum as the corresponding case
patient. Let x; = 1 or 0 if the /th sampled case patient was or was not exposed, respectively,
and let y. = 1 or 0 denote the corresponding exposure status of the first matched control
for this patient. Let p;; denote the probability that x, = i and y, = j. Let po = pi + po
denote the probability that a sampled control patient is exposed. Let p) = p\; + pio denote
the probability that a sampled case patient is exposed andlet g =1 —ppand s = | — p;.
Let ¢ denote the phi coefficient between x; and . (It is easily shown that ¢ is algebraically
identical to the Pearson product-moment correlation coefficient p between x; and y¢.) Let
« and B8 denote the Type I and Type 1l error probabilities, respectively. In the remainder
of this paper the terms case and control patient refer to sampled subjects as opposed to
members of the target population.

For any given values of a, 8, ¥, ¢, and po, the value ol{N/éeeded to detect y with power
1 — B can be decreased by increasing M. Suppose N, and N,, denote the number of case
patients needed to attain the required power given 1 and M matched controls, respectively.
Let Fy, = Nj/N, denote the reduction in N relative to a paired design that can be obtained

by selecting M controls per case.

3. Derivation of Results
By definition ¢ = cov(xy, ¥)/(oxa,). It can be easily shown that

— PuDoo — DioPor 0
vPi1d1Poqo
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which is consistent with equation (5.3) of Fleiss (1981). It follows from the definitions of

p; and g; in terms of p;; that py 1 poo — ProPor = Pt = P1Po = Pido — Dio = qiPo — Por =
Doo — g1 go. Substituting these expressions into equation (1) gives

Pi = pipo + d~pidiPodo; 2)
Pio = P10 — $VD1di Dodo; 3)
Por = @iPo — VP11 Podo; 4
Poo = @1g0 + HVP1G1Potho. (5)

Now p, can be written as a function of ¢, po, and ¢ (see Appendix). Substituting equation
(13) from the Appendix into equations (2)-(5) allows us to write p; as a function of y, po,
and ¢. Thus ¥, po, and ¢ uniquely determine p;;. (Note, however, that not all values of ¢,

Do, and ¢ yield values of pj; that lie between 0 and 1.)
Let pos and po- denote the probability that a control patient is exposed given that his
matched case patient is or is not exposed, respectively. Then

Dos = Pui/P1 = Do + dN@iDogGo/py and  po- = Por/@ = Do — SV P1Podo/ -

Let go. = 1 — po+ and go- = 1 — po_. Then the probability of observing m exposed subjects
among a case patient and his M matched controls is .

M mn— —n1 M n —in
tm = pl(m . l)poir g + ql(m)pof-qa”-
form=1,..., M. Let n;; denote the number of matched sets of subjects in which the case

patient was (i = 1) or was not (i = 0) exposed and j of the M control subjects were exposed.
Let
M
y= 2 ny,m-1

me=1
be the number of discordant sets in which the case patient was exposed and let T, =
Hym-1 + Mo.m be the number of sets in which m subjects were exposed. The expected value
of Ty is E(T,n) = Ntn. Let E, and s, denote the conditional mean and standard deviation
of y given T,, = E(Tn), m = 1, ..., M. Then it follows from equation (5.16) of Breslow
and Day (1980) that E, = Ne, and s, = ¥ Nv,, where

_ o mtm‘!’ < mt,,,\!/(M— m + 1)
= T W= 2 g+ M —mt 1)

Let z, be the value of the standard normal variate exceeded with probability x and let &(zx)
= | — x. Equation (5.19) of Breslow and Day (1980) provides a x* test of the null hypothesis
that = 1. This test can be rewritten as a z statistic involving y and its conditional mean
and standard deviation. It follows by a standard argument that for given «, po, ¢, N, and
M that this test will have power

1—f= @(E‘ = E‘gﬁ z“’zs') +1- @(E' - E‘;+ z"’zs‘). (©)
4 v

When 8 is reasonably small and ¥ > 1, the first term on the right-hand side in (6) is
negligible. In this case
— " Ei— Ey+ z.psi _ N"(e) — ¢) + zopvi”?

—Z = —§
i P’ U‘L’Z
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It follows that

(ZﬁUa + Z,,/zU”z)z
(er — ey)?

Nez= O]

Substituting the preceding expressions into equation (7) permits us to write N as a function
of po, ¢, ¥, @, and B. Thus, equation (7) can be used to determine the number of case
patients needed to detect y with power 1 — 8 given e, po, ¢, and M.

Fys = Ny/N, can also be calculated from equation (7) by taking the ratio of sample sizes
needed using 1 and M controls per case, respectively. The dots in Figure 1 show values of
F,; plotted as a function of pp for a = .05, = .2,y =6,¢ =.1,and M = 2, 3, 4, 8, and
16. This figure is typical of similar figures for a wide range of values of «, 8, ¥, ¢, and M.
For given values of «, 8, ¥, and ¢, these figures indicate that F, can be closely approximated
by linear functions Fy;(po) that have a common intersection point on the line F, = 1
and for which Fy,(c) = (M + 1)/(2M) for some positive c. This latter condition can be met
by setting Fy(po) = (M + 1)/(2M) + bs(po — ¢). The common intersection of these curves
at some point pp = k + ¢ implies that 1 = (M + 1)/(2M) + bk, giving

A M+1 M-1
Fu(po) = i +(2Mk)

(po — ¢), ®)

where k and ¢ are both functions of «, 8, ¢, and . The accuracy and utility of this
expression are discussed in the next section. The straight lines drawn on Figure 1 give
Fu(po) for M =2, 3, 4, 8, and 16. The accuracy of Fy, as an estimate of F), is remarkable.

101 M=1
0.91

¢=01 ¥=6.0 a=0.05 B=0.2

0.7 1
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0.5
0.41
0.31
0.2

0.1

0.0 L T T T T T T T 4 T ¥ T
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Figure 1. This figure shows F),, the reduction in N relative to a paired design that can be obtained

by selecting M controls per case. The dots show the true values of Fy, for M = 2, 3, 4, 8, and 16. The

straight lines show the estimated value of F,, using equation (8) with ¢ = .573 and k = 1.620. In this
example, ¢ = .1, ¥ =06.0, « = .05, and § = .2.
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4. Using the Isographs

Figures 2-7 present sample size isographs for paired case-control studies that were derived
using equation (7). The value of ¢ is constant in each graph and equals 0, .1, .2, .3, .4, and
.5 in Figures 2 through 7, respectively. The values of @ and 8 equal .05 and .2, respectively,
in all graphs and test the null hypothesis that Y = 1 against a two-sided alternative
hypothesis. The abscissa of each graph is p, while the ordinate is the value of y that can be
detected with 80% power. Each figure shows isographs of constant case sample size N as a
function of po and . By interpolating between these lines the reader can either determine
the value of ¥ that can be detected with a given sample size or the sample size required to
detect a given value of .

The value of  in Figures 2-7 ranges from 1 through 6. However, these graphs can also
be used for studies of factors that are thought to reduce disease risk. For example, if factor
X reduces disease risk with odds ratio ¥ < 1, then the absence of X increases the disease
risk with odds ratio 1/y > 1. Thus, sample size calculations using these figures can be based
on the risk associated with not having factor X,

For the values of ¢ and ¢ described in Figures 2-7, it can be shown empirically that
F,, can be closely approximated by equation (8). The values of & and ¢ needed in equation
(8) are given in Table 1. Equation (8) and Table I can be used in combination with Figures
2-7 to determine the sample size needed to detect a given value of y using more than one

w
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Figure 2. The numbers on the lines on this graph indicate constant sample sizes for paired case-

control studies. Each line shows the value of the odds ratio y that can be detected with 80% power

as a function of exposure prevalence p, for control subjects. These curves are derived assuming a two-

sided Type I error probability of @ = .05 and a correlation coefficient for exposure between matched
subjects of ¢ = 0.
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Figure 3. Isographs of constant sample size for paired case-control studies. This figure differs from
Figure 2 only in that the correlation coefficient ¢ equals .1.
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Figure 4. Isographs of constant sample size for paired case-control studies. This figure differs from
Figure 2 only in that the correlation coefficient ¢ equals .2.
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Figure 5. Isographs of constant sample size for paired case-control studies. This figure differs from
Figure 2 only in that the correlation coefficient ¢ equals .3.
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Figure 6. Isographs of constant sample size for paired case-control studies. This figure differs from
Figure 2 only in that the correlation coefficient ¢ equals .4.
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Figure 7. Isographs of constant sample size for paired case-control studies. This figure differs from
Figure 2 only in that the correlation coefficient ¢ equals .5.

matched control per case. For example, suppose po = .6, ¢ = .2, and that we wish to detect
¥ = 3 with power .8. Then Figure 4 shows that we should select 80 case patients using a
paired design. If we select 3 control patients per case, then Table 1 gives k = 3.669 and
¢ = 1.028 when ¢ = .2 and ¢ = 3. Substituting these values into equation (8) with M = 3
and po = .6 gives F3( 6) = .6278. Thus, with N = 80F3(.6) = 50 cases and 3 controls per
case we can detect y = 3 with 80% power. In this example the true value of F; equals
.6264, which also yields N = 50. Thus, in this example, the estimate of N obtained by using
Table 1 is correct to the nearest integer. Table 2 shows the maximum percentage error in
Fiy for values of M between 2 and 16 and the values of po, ¢, and ¢ given in the figures.
For 2, 3, or 4 controls per case, the error in ), is always less than 3%. Larger values of M
are associated with higher errors when po is-small. In this case £, overestimates Fy, and
hence overestimates the required number of case patients.

Schlesselman (1982, p. 168) recommends multiplying the paired-case sample size by
(M + 1)/(2M) to obtain the equivalent case sample size with A matched controls per
group. Equation (8) shows that this approach provides an acceptable approximation if po
is near ¢ or when k is large. From Table 1 we see that & increases as y approaches 1. Thus,
Schlesselman’s multiple control correction is asymptotically -correct for large N since N
approaches infinity as ¢ approaches 1. Equation (8) shows, however, that Schlesselman’s
adjustment is inaccurate for many reasonable values of po and . For small values of po
this adjustment will greatly overestimate the number of case patients needed to achieve the
required power.

Software is available from the author-on request which derives the value of ¥ that can be
detected with power 1 — 8 gived «, ¢, po, NV, and M, j as well as the case sample size N

e e ——
pa—

o s
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Table 1
Coefficients k and c for power calculations with multiple controls per case. These coefficients are used
in equation (8), with e« = .05 and g = .2.

Correlation coefficient ¢

Vv 0 A 2 3 4 5
1.5 k 6.148 8.098 10.827 14.754 20.610 29.760
¢ 486 1.238 2.404 4.235 7.173 12.062
2.0 k 3.568 4.651 6.158 8.304 11.446 16.223
c 479 .890 1.517 2.485 4.003 6.455
3.0 k 2.218 2.829 3.669 4.834 6.477 8.848
¢ 472 697 1.028 1.515 2.240 3.339
6.0 k 1.332 1.620 2.002 2.498 3.143 3.997
c 471 573 704 870 1.080 1.350
Table 2

Maximum percentage error in efficiency ratio F, (Do)
I<y¢=s3 3<y=<6

Os¢p=s2 2sM=<4 1.2 1.2
M=238 4.4 5.7
M=16 7.5 11,
2<¢p=<.S5 2=sMs4 1.9 2.7
M=28 6.7 11.
M=16 11 18.

needed to detect a true value of y with power 1 — 8 given «, 8, po, and M. These programs
calculate the exact power associated with A/ controls per case without using the approxi-
mation of F), given in equation (8).

5. Comparison with Schlesselman’s Method

Suppose ¢ = .2 and p, = .6. Figure 4 shows that ¥ = 3 can be detected with 80% power
when N = 80. Substituting these values of ¢, po, and ¥ into equations (2)-(5) gives the
following 2 X 2 table of exposure probabilities for a matched pair of case-control patients:

Case
+ G Total
b d D= .509 Por = ,091 Do = _6
Control
—  P0=272 pw=.128 g=.4
Total n=.781 ¢ =.219 1

[It is worth noting as a check on the validity of equations (2)-(5) that ¥ = pio/pe; = 3.0
and that ¢ = .20 using equation (1).] The probability of a discordant pair is thus po + po,
= .363 and hence the expected number of discordant pairs given a sample size of N = 80
case patients equals 80 X .363 = 29.0. In comparison, equation (6.20) of Schlesselman
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(1982) gives that the number of discordant pairs needed to detect ¢ = 3.0 with 80% power

is
_ | 2025 14 i 4 _l i _
m——[u-—z + 25 \/ a +¢)2] /[(1 i 2] = 28.9,

which is in close agreement with the expected number of discordant pairs given above.
Thus, the method presented in this paper can be thought of as a generalization of
Schlesselman’s method to the case in which ¢ # 0. Equation (6.23) of Schlesselman
estimates N to be »m/(pogq: + pige) = 65. This estimate, which is derived under the
assumption that ¢ = 0, overestimates the expected number of discordant pairs and hence
underestimates the sample size needed for the required power.

6. Estimating p, and ¢

Do is the probability that a sample control patient will be exposed. The control sample is
not, however, a random sample from the control population but, rather, is matched to a
random sample of case patients from the case population. Thus, an unbiased estimate of
the exposure prevalence in the control population is not necessarily an unbiased estimate
of po. Let po(c) denote the probability that a control subject with confounding variable c is
exposed, De...(€) and D.(c) denote the probability density functions of ¢ among the case
and control populations, respectively, and let p§ denote the exposure prevalence in the
control population. Then

Do = fpﬂ(c)Dcnsc(c) de (9)

while

pe = f Po(€)Dey(c) de.

When c is positively associated with both disease incidence and exposure prevalence, pg
will underestimate po. Note, however, that if po(c) is constant, then pp = pg and p¥ will
approximate p, whenever the exposure prevalence in the control population does not vary
greatly with ¢, In many case-control studies, there is little association between the confound-
ing variable and the exposure variable in the control population. For such studies it is\
reasonable to estimate p, by the exposure prevalence in the general population. When a-
more accurate estimate of pp is required, it may be estimated through equation (9). To do
this it is necessary to obtain estimates of the confounder-specific exposure prevalence rates
in the control population as well as estimates of the distribution of case patients with
respect to c. [Note that the method of Parker and Bregman (1986) also requires estimates
of the confounder-specific exposure prevalence rates and that they estimate the distribution
of case patients with respect to ¢ by assuming a constant disease incidence among unexposed
subjects.]

The correlation coefficient ¢ can be estimated from previous studies that publish matched
2 X 2 contingency tables using equation (5.2) of Fleiss (1981). Of course, such data could
also be used to estimate the proportion of discordant pairs, which in turn could be used to
obtain sample size estimates using Schlesselman’s (1982) method. However, the proportion
of discordant pairs is likely to vary considerably between different studies since it depends
not only on ¢ but also on the exposure prevalence po and the odds ratio y. In contrast,
estimates of ¢ should be more stable between similar studies. When no estimate of ¢ is
available, investigators may prefer to perform their power calculations under the assumption
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that ¢ equals, say, .2 rather than make the questionable independence assumption required
by most other methods.

7. Conclusions

The graphs presented in this paper demonstrate and quantify the complex relationship
between sample size, power, the magnitude of the control exposure prevalence po, and the
exposure correlation coefficient ¢. Figures 2-7 illustrate the substantial loss in power that
“occurs with increasing correlation between the exposure status of matched case-control
pairs. For example, when ¢ = 0, the minimum value of Y that can be detected with 80%
power and N = 50 is 3.14. This minimum value increases steadily with increasing ¢,
reaching 5.45 when ¢ = .5. The value of p has little effect on power when Y is low and po
is not too extreme (say ¢ < 2 and .2 < p, < .8). However, the precise value of Do has
a critical effect on the power when py is near 0 or 1, or when the sample size is small. This
result is due to the influence of pp and ¢ on the expected number of discordant case—
control pairs. The method presented here will provide accurate power calculations whenever
reasonable estimates of po and ¢ are available. Even when no appropriate estimates of ¢
can be found, investigators can still avoid the independence assumption for exposure
among matched subjects by selecting a reasonable value of ¢. This will produce sample
size estimates that are more conservative and plausible than those based on the indepen-
dence assumption.
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RESUME

La puissance des études cas-témoins appariées est déterminée en fonction de Do, probabilité d’expo-
sition chez les témoins, ¢, coefficient de corrélation entre les expositions chez les malades et témoins
appariés, et y, “odds-ratio” mesurant la relation exposition-maladie. Pour des risques de premiére et
seconde espéce donnés, « et 8, I'odds-ratio qui peut étre détecté est calculé en fonction de la taille de
Iéchantillon et inversement. On présente des abaques qui, pour les études 1-1, montrent la relation
entre la taille de I’échantillon et la puissance pour « = .05, B = .2 et différentes valeurs de po, ¢, et ¢.
Le passage aux études 1-M se fait au moyen d’une équation simple.

Ces résultats quantifient la perte de puissance associée 4 une augmentation du coefficient de
corrélation ¢. Des valeurs de p, voisines de 0 au 1 nécessitent des effectifs importants, Des exemples
illustrent ces résultats.
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APPENDIX

We wish to express p, in terms of ¥, po, and ¢. It follows from the definition of the terms pj
that ¢ = mepul, Pr— Po=Dwo~ Pn = (s Dpors P11 = Po — Pors and poo = q1 — Dor- Hence, po =
(py — )/ — 1), Pro = vip—p)@— 1), = (Wpo — )/ — 1), and poo = (Y@ — Go)/ (& — 1).

When ¢ # | we can substitute these expressions into equation (1) to obtain

_ Vot pido — Y(Pogi + Pido) (10)
W — 1)*Vpi@iPodo )

¢

Equation (10) can be rewritten in the form

A+ Bp1
h = F—, (11
vpi = pi )
where A and B are functions of ¢ and po. Squaring equation (11) yields
(B> + ¢2)p} + (24B — ¢); + 47 =0, (12)

which is a quadratic equation in p;. Equation (12) has two roots:
e 2¢po(po + qo) + (b — 1)?pagodp® — (¢ — Dpogod Joiy — 1) + 4y
[ )
2[(¥po + Go) + (¥ — 1)*Poqo ]

which is also the solution to equation (1 1), and another root that solves —¢ = (4 + Bp)/vp — .
Thus, to prove that equation (13) is the solution to equation (11)itis sufficient to substitute (13) into
the right-hand side of (11) and then show that this expression has the same sign as ¢. This is a
straightforward exercise. It is interesting to note that when ¢ = 1, p = po. Hence, equation (13) is
correct for all positive values of . Note also that when ¢ = 0, (13) reduces to (6.2) in Schlesselman
(1982).

(13)
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