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Introduction

B1. Respondent Universe and Sampling Methods

The sampling frame includes all TLPs funded in September 2017 and September 2018. From 
among these, 30 TLPs were recruited to participate in the study. The selection process was based
on the following criteria: 1) number of expected entries, which estimates the TLP service volume
over a 12-month period; 2) program structure (excluded TLPs that operate in collaboration with 
sub-grantees or across several locations); 3) length of time providing TLP services (new TLPs 
with little prior program experience were excluded from the study) and 4) program model 
(excluded TLPs that did not provide youth with fully or nearly-fully subsidized transitional 
housing). 

ACF provided the research team with a complete list of the 2017 and 2018 TLP grantees along 
with historical information about their service volume. To identify an initial set of grantees for 
recruitment, the research team rank-ordered TLPs according to their projected service volume to 
identify those with a high service volume. The contractor screened the candidate TLPs to 
identify those to include in the Youth Outcomes Study. 

Across the 30 grantees ultimately included in the study, the intent is to achieve a total sample 
size of up to 400 youth.1 Thus, the average agency will enroll 10-15 youth in the study over an 
estimated 4-month period. To be eligible for the study, youth may be entering the TLP 
(prospective enrollment) or may have already entered within the past 12 months and have at least
1 month of program participation (retrospective enrollment). Otherwise, study eligibility 
requirements mirror program eligibility and enrollment requirements. Study participation is 
voluntary, and youth enrolled in the TLP will elect to participate in the study (or not) through an 
informed consent process. 

B2. Procedures for Collection of Information

The study will collect information on youth characteristics and experiences from approximately 
400 youth across 30 grantees. The research approach uses a Background Information Form (BIF)
and a Youth Information Form (YIF) (Attachments C and D) to collect data directly from youth 
(via the BIF) and from TLP programs (via the YIF). Both the BIF and the YIF will be 
administered via a secure, encrypted, passcode protected website that is built to comply with 
FISMA moderate standards. This website will serve as the study’s data collection portal (“study 
portal”), and it will allow research staff to monitor study enrollments and BIF and YIF 
completion rates. 

Before data collection begins, trained TLP staff will obtain youth consent and, as needed for 
minors, assent with parental permission (Attachments A and B). They will then administer the 
BIF, which will involve seating each youth respondent at a computer (in a designated private 
space) and assisting them in completing the BIF via the web portal. The youth respondent can 
ask for assistance from the TLP staff to complete the BIF if they wish. Once the youth completes

1 Most TLPs serve a relatively small number of youth. Among the TLPs funded in September 2017 alone, the 
average number of youth served annually was about 10, ranging from 1 to 54 youth annually.  
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and submits the BIF, they will be automatically signed out of the study portal for added security. 
BIF data will be collected prospectively as participants enroll in the study.

The YIF draws on existing program data collected by TLP grantees. TLP staff will be asked to 
transfer this program data to the evaluation team via the same secure web-based study portal 
used to enroll youth into the study and collect the BIF. YIF data may be entered into the study 
portal either retrospectively or prospectively, depending on the timing of a youth's enrollment 
into the TLP and the study (see B1). 

Analytic Methods 

The study analyses are aligned with five overarching research questions: 

1) What are the prevalence and distribution of housing stability, education, and employment
outcomes among TLP youth before, during, and after program participation (as examined
using means and frequencies)? 

2) What are the trajectories of employment and earnings among TLP youth before, during, 
and after program participation (as examined using latent growth curve analysis)?

3) What is the extent to which youth sustain employment (overall and with the same 
employer) and enrollment in post-secondary education (as examined using survival 
analysis)?

4) What are the differences in primary study outcomes for key subgroups of youth based on 
demographic and program characteristics (as examined using cross-tabs and graphical 
display of trends)? 

5) In what ways are TLP youth's housing, education, and employment experiences affected 
by the COVID-19 pandemic?

The analyses will rely on data collected in the BIF and YIF as well as on administrative data 
obtained from the National Student Clearinghouse (NSC) and the National Directory of New 
Hires (NDNH). The data we will collect features repeated retrospective observations of 
employment and earnings that look back over a period of up to 11 quarters (33 months) and 
repeated observations of education that look back over a period of up to 48 months. Our analyses
are designed to capitalize on the data’s longitudinal nature, as described below.  

In Exhibit B.2.1, we present the main outcomes examined, their sources, the analyses in which 
they will be used and the research question with which they are aligned. In addition, we will use 
demographic measures (youth age, gender, race/ethnicity) and whether the youth was referred to 
the TLP from a Basic Center Program, obtained at study enrollment through the BIF for cross-
tabulations in descriptive analyses and as covariates in survival and latent growth curve analyses.
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Exhibit B.2.1. Description of primary study outcomes, data sources, and analyses 

Outcome Source Number of times 
assessed† 

Descriptive 
analysis

Growth 
curve 
analysis 

Survival 
analysis

Employment: 
Formally employed

NDNH 
administrative 
data 

Up to 11 quarters (33 
months) of data 
collected 
retrospectively via up 
to 4 data pulls from 
NDNH over the study
period

RQ1,
RQ4, RQ5

RQ2,
RQ4, RQ5

Employment: 
Maintained formal 
employment

NDNH 
administrative 
data

Up to 11 quarters (33 
months) of data 
collected 
retrospectively via up 
to 4 data pulls from 
NDNH over the study
period

RQ1,
RQ4, RQ5

RQ3,
RQ4, RQ5

Earnings: Average 
earnings from formal 
employment

NDNH 
administrative 
data

Up to 11 quarters (33 
months) of data 
collected 
retrospectively via up 
to 4 data pulls from 
NDNH over the study
period

RQ1,
RQ4, RQ5

RQ2,
RQ4, RQ5

Education: Enrolled 
in post-secondary 
education

NSC 
administrative 
data 

Up to 48 months of 
data collected 
retrospectively via up 
to 2 data pulls from 
NSC over the study 
period

RQ1,
RQ4, RQ5

RQ2,
RQ4, RQ5

Education: 
Maintained post-
secondary enrollment

NSC 
administrative 
data

Up to 48 months of 
data collected 
retrospectively via up 
to 2 data pulls from 
NSC over the study 
period

RQ1,
RQ4, RQ5

RQ3,
RQ4, RQ5

Housing: Homeless or
unstable housing 
status

YIF Program entry, 
program exit, and up 
to 5 encounters post-
exit (for a total of up 
to 7 encounters) 
collected 
retrospectively or 
prospectively from 
TLPs over the study 
period

RQ1,
RQ4, RQ5

Notes: NDNH = National Directory of New Hires, NSC = National Student Clearinghouse, RQ = Research question,
YIF = Youth Information Form.
† Follow-up administrative data collection will occur over a period of up to 8 months for the YIF and 10 months for 
NDNH and NSC data. The “number of times assessed” differs from the length of time the contractor will be 
collecting this data due to the retrospective nature of this administrative data collection. NDNH data will be 
requested once per quarter up to 4 times. Each data request provides employment and wage data for the prior eight 
quarters. NSC data will be requested dating back to August 2017.
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In the first set of analyses addressing research questions one, four and five, we will use 
descriptive statistics to report overall rates of homelessness or unstable housing arrangements, 
education, employment, and earnings at program entry, program exit, and 3 months after exit. To
address our fourth research question (about subgroup differences in outcomes), these results will
be cross-tabulated by youth age (under 18 versus 18 and over), gender, race/ethnicity, and 
housing status prior to program entry for descriptive purposes.

In the second set of analyses, addressing research questions two, 
four and five, we will describe trajectories in average formal 
employment rates, earnings from formal employment, and post-secondary 
enrollment rates for the study sample of TLP enrollees over the full study 
observation period using administrative data. We will describe trajectories 
from repeated measures of these outcomes using latent growth curve (LGC) 
analysis. We will explore what shape of trajectory (functional form of change)
best fits the data and conduct statistical tests of whether the shape or rate of
change differs in the periods prior to, during, and after participation in a TLP. 

The formal matrix expression of a latent curve model without predictors 
(unconditional model) is

y = Λη + ε

where: 
 y is a T x 1 vector of repeated measures for each individual i and T is the number of time 

points;

 Λ is a T x m matrix of factor loadings (that specify the functional form of time);

 η is a m x 1 vector of m latent factors (representing the growth parameter estimates); and

 ε is a T x 1 vector of residuals (difference between individual’s predicted and actual score).

To identify the best-fitting trajectory shape, we will use a base model 
specifying simple linear growth in each time period and then test alternative 
models specifying more complex trajectory shapes to see whether they fit 
the data better than the simpler base model. Our base model will be a 
piecewise linear model with separate linear growth parameters for 
observations before (pre), during, and after (post) program participation, 
assuming a constant rate of change in each of these three time periods, but 
allowing this rate to differ in each period. We will then test whether assuming
change is quadratic (where the rate of change varies, depicted by a curved 
line) in each period improves model fit. Maximum likelihood estimation is 
used to identify the parameter estimates that best fit the data.

After determining the best-fitting trajectory shape within each time period, 
we will test whether assuming that the rate of change between each time 
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period is the same results in worse model fit. For example, if there is little 
difference in the sample’s earnings trajectory during and after program 
participation, assuming that a single line fits best would not result in 
significantly worse model fit. However, if employment rates sharply decline 
after program exit, assuming the trajectory is the same in both time periods 
would result in model fit statistics indicating worse fit.

We will use an individually varying specification of time, where youth 
contribute all observations they have during each time period to estimating 
the trajectory for each time period. That is, a youth who remains in a TLP for 
two quarters and then has four quarters of earnings data after program exit 
would contribute two quarters of earnings data for estimating the trajectory 
of youth during program participation and four quarters of earnings data for 
estimating the trajectory of youth after program exit. Under this specification
of time, results would indicate the average change in the outcome per 
quarter prior to, during, and after program participation. Graphical depictions
of these growth curves will be constructed based on the average program 
length of stay and average length of time youth were observed prior to and 
after program participation.

We will use statistical fit indices to assess how well each model fits the data 
in terms of both overall fit to the data and relative fit between competing 
models. The Root-mean Square Error of Approximation (RMSEA) will be used 
to assess both overall and relative model fit based on point estimates and 
confidence intervals. RMSEA values of less than .05 indicate a very good 
overall fit, .05 to less than .10 moderate fit, and greater than .10 a poor fit, 
based on simulation studies (Browne & Cudeck, 1993; Steiger, 1989). RMSEA
also can be used to assess whether an alternative model fits better or more 
poorly than a base model by examining whether the point estimate of the 
base model is contained within the 95% confidence interval of the alternative
model. For example, if RMSEA is .05 for a model where change during 
program participation was linear, and RMSEA is .02 in an alternative model 
where change during program participation is quadratic with a 95% 
confidence interval of .01 to .03, we would conclude an assumption of 
quadratic change during program participation fits the data better than 
linear change.

With a sample size of 400, we would be able to detect a difference between 
perfect overall model fit (RMSEA = 0) and close model fit (RMSEA = .05) 
97.7% of the time for our base model. We would need a minimum sample 
size of 245 to be able to detect a difference in fit of this size 80% of the time 
(the conventional standard for adequate statistical power). We also expect to
have high power to detect differences in relative model fit for our key tests 
of whether the rate of change across two time periods is significantly 
different. We would be able to detect a difference in RMSEA of .01 or more 
(e.g., RMSEA = 0.04 vs. 0.05) 96% of the time between our base model 
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where the rate of change differs in each time period and one where the rate 
of change is assumed to be the same in two time periods. We would need a 
minimum sample size of 228 to be able to detect a difference of this size 
80% of the time.

We will identify the best fitting model for describing the trajectory of youths’ 
outcomes, accounting for their experiences before, during, and after 
program participation, and evidence of whether youth trajectories during 
program participation appear to differ from those prior to program entry or 
after program exit.

As part of our fourth research question, after fitting latent growth models 
without covariates, we will run and graphically depict exploratory analyses 
with dummy variable covariates for youth age (18 and over), gender 
(female), minority race/ethnicity status (minority), and referral from a basic 
center program (BCP) to examine whether growth trends appear to differ by 
these characteristics. For example, a positive coefficient for a dummy 
variable for female youth in predicting intercept term would indicate females
entered TLPs at a higher employment rate than males and a positive value in
predicting the slope during TLP participation would indicate female 
employment rates rose faster than male employment rates during TLP 
participation.

We anticipate minimal missing data because we are collecting outcomes 
data from administrative sources (i.e., national administrative data 
clearinghouses for education and employment and program administrative 
records (required by funders) for housing outcomes). We will use direct 
maximum likelihood estimation (also known as full information maximum 
likelihood estimation) to address any missing data. This method assumes 
that missing data are unrelated to the outcome after accounting for any 
covariates included in the model. For example, it may be that child age is 
predictive of missing data on employment, but after accounting for children’s
age, there are no unobserved variables that are predictive of whether an 
observation is missing or not.

We will also run supplementary analyses examining whether average 
employment rates, earnings, and enrollment rates prior to the program and 
after the program differ from those observed during the program. We will 
use a mean differences model specified as follows:

Y ij=β0+β1 X PRE+β2 X POST +∑
1

j−1

α j+εij

Where 
 Y ij is the observed outcome measure for youth j at time i;  
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 X PREis a dummy variable set to 1 when time i is prior to program entry and to 0 when time i 
is on or after program entry;

 X POSTis a dummy variable set to 1 when time i is on or after program exit and to 0 when time 
i is before program exit;

 β0 is the intercept term (representing the mean in the period during the program for the 
omitted person j;

 β1 is the mean difference in the outcome for all observations prior to program entry 
(indicated by the dummy variable X PRE= 1) compared to the mean of observations during 
program participation (where X PRE= 0 and X POST= 0);

 β2 is the mean difference in the outcome for all observations after program exit (indicated by 
the dummy variable X POST= 1) compared to observations during program participation 
(where X PRE= 0 and X POST= 0);

 ∑
1

j−1

α j
 is a series of dummy variables for each youth up to the j – 1 youth;

 ε ij is an error term for person j at time i.

It is possible that observations that are closer together in time are more strongly correlated than 
observations that are farther apart (i.e., autocorrelation), so we will compute robust standard 
error estimates (using Huber-White sandwich estimators), which will ensure correct estimation 
of standard errors even if auto-correlation or other sources of heteroscedasticity are present 
(Huber, 1967; White, 1980, 1984).

The focus of this analysis is to provide a supplementary analysis to the growth curve analysis, 
not on testing the statistical significance of mean differences. Nonetheless, based on a sample 
size of 400 and a critical value of .05, we would expect to be able to detect an effect size between
.09 and .18 for the difference between pre-TLP and during TLP outcomes with 80% power, 
depending on the correlation between the pre and during period (range based on estimated 
correlations of .80 and .20, respectively, with similar power for during versus post-TLP). This 
translates to a minimum detectible difference of approximately $450 to $900 in quarterly 
earnings, 4 to 8 percentage points for educational enrollment, and 3.5 to 7 percentage points for 
employment based on program exit findings from the Youth Villages Evaluation (Valentine, 
Skemer, & Courtney, 2015).

In the third set of analyses, addressing research questions three, 
four and five, we will use survival analyses to describe the extent to 
which youth who are employed or enrolled in post-secondary education 
continuously maintain their employment or enrollment status. Survival 
analyses properly account for youth who experienced an event (i.e., loss of 
initial employment after program enrollment) in an earlier time period no 
longer being at risk for experiencing this outcome. It also accounts for youth 
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not having yet experienced the event by the end of the study observation 
period still being at risk for experiencing it in the future (termed right 
censoring). Results will be presented both numerically in terms of the 
expected number of events per unit of time (the event hazard) and 
graphically as survival curves.   

With educational and employment outcomes being measured in quarters and
semesters, respectively (as this is how data is reported back from NSC and 
NDNH), it is likely that there will be a high proportion of events being 
recorded as occurring at the same time (termed ties). Standard Cox 
regression models assume time is continuously measured, rather than being 
measured in quarters or semesters. When a survival analysis finds that 
outcomes frequently occur at the same time, statistical adjustments need to 
be made to account for ties. 

Exact methods for ties assume there is a true, but unknown ordering of 
events recorded as occurring at the same time. This assumption fits well for 
employment outcomes, where there is an exact ordering of the time of a job 
loss and ties are largely a result of continuous employment time being 
aggregated into quarters in NDNH administrative data. Discrete methods 
assume events are actually occurring at the same time. This assumption fits 
well for enrollment outcomes, where the outcome of interest is enrollment 
status for a whole semester as a discrete unit of time, even if non-enrollment
or drop-out may occur at varying times. 

For both employment and post-secondary enrollment outcomes, we will use 
a discrete time logistic regression model where each unit of time is an 
observation. For post-secondary enrollment outcomes, a logit link function 
will be included to provide estimates of the discrete time proportional odds 
of maintaining enrollment in each semester. This model takes the form of

log(
Pit

1−P it
)=α t+β1 x it 1+…+βk x itk

where
 Pit is the conditional probability that youth i is no longer enrolled at time t given that 

disenrollment has not already occurred to that youth as of time t.

 αt is a series of constants, one for each time point. 

 x itk is a covariate value of covariate k for youth i at time t.

 βk is the coefficient estimate for the kth covariate.
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For employment outcomes, a complementary log-log link function will be included to provide 
estimates of the hazard of employment retention based on an assumption of continuous time. 
This model estimates the same parameters as described above and takes the form of

log [− log (1−P it ) ]=αt+ β1 x it1+…+ βk x itk

To answer our fourth research question (about subgroup differences in 
outcomes), for both sets of outcomes, we will first run models without 
covariates to understand retention (of employment or post-secondary 
enrollment) in the overall sample and then run analyses including youth 
characteristics as covariates to understand associations between these 
characteristics and retention. We will graphically depict survival curves for 
each subgroup.

To answer our fifth research question (about COVID-19 experiences), we will
use descriptive statistics, and we will add a time-varying covariate for the 
onset of COVID-19 to the models described above (second and third sets of 
analyses). We will first use frequencies to describe youth’s self-reported 
perceptions of COVID-19's influences on their housing, education, and 
employment. 

Second, we will use frequencies to describe TLP-staff-reported changes in 
youth's housing, education, and employment goals in their case plans. This 
will enable us to understand the ways programs may have adjusted (e.g., de-
emphasized or more strongly emphasized) education or employment 
expectations for youth who entered TLPs prior to and after the onset of 
COVID-19. Adjustments in program expectations may influence education 
and employment trajectories. Thus, this information can help contextualize 
study findings about change in these trajectories observed after TLP entry. 

Third, we will assess the extent to which the onset of COVID-19 is associated with differences in
youth educational and employment trajectories and retention by adding a time-varying covariate 
for the onset of COVID-19 to the models described above (second and third sets of analyses). 
The U.S. declared a state of emergency due to the COVID-19 pandemic on March 1, 2020, and 
nearly all programs (97 percent) are in states that implemented stay-at-home orders by April 1, 
2020. Our minimum time units of analysis for trajectory outcomes are quarters for employment 
data and semesters for education data. We will code the time-varying variable as time-weighted 
exposure (meaning the COVID-19 pandemic is active in the U.S.), with a value of 0 for units of 
time prior to March 1, 2020 that do not contain March 1, 2020 (i.e., prior to Q1 2020), a value of 
1 for time periods after March 1, 2020 that do not contain this month (i.e., Q3 2020), and the 
proportion of time in days on or after March 1, 2020 included in the unit of time for periods of 
time that include March 2020 (i.e., for Q1 2020, 31 ÷ 91 days = 0.34).  This covariate can be 
interpreted as the difference in the average rate of change (slope) or in the survival hazard during
time periods of exposure to COVID-19 compared to time periods without exposure to COVID-
19. (If the COVID-19 pandemic is deemed to have ended in the U.S. by the end of study data 
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collection, the same approach could be used to weight time periods of partial or no exposure 
based on an established end date.)

B3. Methods to Maximize Response Rates and Deal with Nonresponse

Expected Response Rates
All individuals who agree to participate in the evaluation will be asked to complete the BIF to 
participate in the study. However, it is possible that some youth respondents will not fully 
complete the BIF. Because of the relatively short burden to complete the BIF, we anticipate these
occurrences will be rare. Participants will also be provided with a $10 gift card as a token of 
appreciation for completing the BIF and to acknowledge their essential contribution to the study. 
We therefore anticipate a 95 percent response rate for youth who complete the consent form. 
The data collected via the YIF is standard program data that TLP programs collect. We anticipate
TLP staff will update the information in the YIF on a rolling basis as youth enter and exit the 
TLP and complete aftercare services. However, it is possible that some youth will fail to provide 
the TLPs with this program data. A 95 percent response rate is also expected for the YIF.  

Dealing with Nonresponse

The presence of non-response to select questions in the BIF can threaten the ability to conduct 
administrative data matching. To minimize this risk, we will also ask TLP program staff to verify
each youth’s SSN as part of the administrative data collection effort built into the Youth 
Outcomes Study design.

Maximizing Response Rates

Collecting longitudinal data from runaway and homeless youth is a challenge because many are 
transitory and lack fixed addresses. To obtain adequate data, the Youth Outcomes Study will 
shift to an approach that relies largely on administrative data. This shift means that the evaluation
will no longer be dependent on follow-up survey responses from youth, thus minimizing the risk 
of non-response. 

B4. Tests of Procedures or Methods to be Undertaken

ACF is not proposing any substantive changes to the previously approved questions that remain 
in the BIF as part of this request. ACF has not conducted any additional testing of the data 
collection procedures or methods since receiving initial OMB approval.

B5. Individual(s) Consulted on Statistical Aspects and Individuals Collecting and/or 
Analyzing Data

Consultations on the statistical methods used in this study have been undertaken to ensure the 
technical soundness of the research. Administration of the data collection will be overseen by 
Abt Associates (statistical and research contractor). The same contractor will analyze data. 
Members of this research team include: 
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Ms. Alisa Santucci
Abt Associates 
6130 Executive Boulevard 
Rockville, MD 20852
(301) 347-5376
 
Dr. Jill Khadduri
Abt Associates 
6130 Executive Boulevard 
Rockville, MD 20852
(301) 634-1745

Mr. Cristofer Price
Abt Associates 
6130 Executive Boulevard 
Rockville, MD 20852
(301) 634-1854

Dr. Jessica Thornton Walker
Abt Associates 
6130 Executive Boulevard 
Rockville, MD 20852
(301) 347-5622

Dr. Scott Brown 
Abt Associates 
6130 Executive Boulevard 
Rockville, MD 20852
(301) 347-5597

Ms. Tanya de Sousa
Abt Associates 
6130 Executive Boulevard 
Rockville, MD 20852
(301) 347-5695
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