This worksheet is used to capture information on Clean Energy Manufacturing and Recycling project Applicant should first fill out the relevant user input (green) cells in the *Project Overview* tab. Next, a tabs, as well as the yellow tab that is specific to your Technology Area. Data will be extracted from t

Section	Applicant Information	Input
Project Overview	Applicant Case Number	
	Company Name	
	City (HQ)	
	State (HQ)	
	Zip Code (HQ)	
	City (Facility)	
	State (Facility)	
	Zip Code (Facility)	
	Qualified Investment (\$)	
	Expected Credit Rate	30%
	Tax Credit (\$)	0
	Production or Recycling	
	Primary Technology Area	
	Primary Production Output	

es next to the corresponding inputs

t proposals. Input data and assumptions should be substantiated in and show clear correspondence to applicant' applicant should fill out the user input cells in the *Supply Chain*, *Community Benefits and Jobs*, *Emissions*, and Vol his workbook to compare submissions. Therefore, no cells, rows, or columns should be added.

Units	Notes
	The case number used to track the application in the DOE 48C application portal
	Dollar amount of the qualified investment that "re-equips, expands, or establishes" the
	Applicants should select a 30% tax credit if they anticipate meeting the wage and appre- requirements under 48C(e)(5) and (6). Applicants who do not anticipate meeting those r should select 6% from the dropdown.
	Calculated by multiplying Qualified Investment by Expected Credit Rate.
	Indicate whether the project is primarily in producing or recycling eligible advanced ene
	Every application must choose at least one technology area (and fill out the correspondi
	Brief description of the facility output product in 5 words or less (e.g., "wind turbine black

s project narrative. luntary Disclosure

facility, as defined nticeship requirements rgy property. If it is ng yellow tab). If

. des"). Please list the direct jobs that will be created during both construction and operations of the facility. For retrofits calculating incremental operating jobs created by the project. Please be as specific as possible.

Direct jobs are those jobs represented by the number of people whose work is directly billed to the project. **Do not list Indirect Jobs**, defined as employees included in the supply chain who are not directly billed to the pro-Producers of equipment or services that are used on the project

- Accounting or administrative services

- End-use installers

- Operating jobs unrelated to the project (for a GHG reduction project in a steel facility, do not count steelworke) The review team will calculate indirect jobs using a consistent methodology.

Applicant should fill out this section for any construction jobs they anticipate will meet wage and apprenticeship requirements under 48C(e) and corresponding Treasury guidance.

Construction Jobs - Meeting Wage and Apprenticeship Requirements				
Job Category Applicant can determine category	Annualized FTE FY2023	Annualized FTE FY2024	Annualized FTE FY2025	Annualized FTE FY2026
,,,,,,,,,,,, _,, ,,				

the corresponding inputs

s/reequipped facilities, please list the number of current jobs for the purposes of

pject. Examples include:

rs not working on the GHG reduction)

Applicant should fill out this section only if they anticipate that certain construction juprevailing wage and apprenticeship requirements. If so, they are not guaranteed the expect to receive a 6% credit or pay penalties.

Construction Jobs - <u>NOT</u> Meeting Wage and Apprenticeship Requirements

Annualized FTE FY2027	Job Category Applicant can determine category	Annualized FTE FY2023	Annualized FTE FY2024	Annualized FTE FY2025

obs will not m 30% credit ar		Current and anticipated operating jobs at the facility. Applic this is an existing facility.		
		Operating Jobs		
Annualized FTE FY2026	Annualized FTE FY2027	Job Category Applicant can determin	Current FTE (if applicable) FY2022	Annualized New FTE FY2023

cant should fill out the	first column for	Current FTE only if
--------------------------	------------------	---------------------

Annualized New FTE FY2024	Annualized New FTE FY2025	Annualized New FTE FY2026	Annualized New FTE FY2027

User Input

This worksheet is used to first fill out the relevant u Technology Area. Data w

Section

Project to completion

Site selection

Funding availability

Market overview

Corporate health

Calculated or from other tab

capture information on commercial viability of Clean Energy Manufacturing and Recycling pro user input (green) cells in the *Project Overview* tab. Next, applicant should fill out the user inpu ill be extracted from this workbook to compare submissions. Therefore, no cells, rows, or colu

Date Complete Permitting
Date Begin Construction
Date Begin Operation
Company Name
City (Facility)
State (Facility)
Zip Code (Facility)
Equity (%)
Debt (%)
Equity sources
Debt sources
State or local incentives (\$)
Other federal incentives (\$)
Market share
Expected growth in the next 5 years after production commencement
End use application or installation of product
Ongoing legal claims (Yes or No)

Planned debt restructuring (Yes or No)

Other planned corporate actions that may affect completion of project (Yes or No)

oject proposals. Input data an it cells in the *Supply Chain, Co* mns should be added.

Input

Instructions are in yellow boxes next to the corresponding inputs

d assumptions should be substantiated in and show clear correspondence to applicant's project narrative. Applicant should mmunity Benefits and Jobs, Emissions, and Voluntary Disclosure tabs, as well as the yellow tab that is specific to your

Notes

Automatically populated from "Project Overview" tab. Automatically populated from "Project Overview" tab. Automatically populated from "Project Overview" tab.

Indicate the percentage equity held by the company in the project. Indicate the percentage of debt owed by the company. Enter 0 if not applicable.

Indicate amount of state or local incentives received for the project. Indicate amount of other federal incentives received for the project.

Indicate the percentage of expected growth rate for the product after 5 years of project commencement.

Indicate if there are any ongoing or expected legal claims related to the project . If selecting Yes, explain in brief.

Indicate any planned debt restructuring. If selecting Yes, explain in brief.

Indicate any planned corporate or management actions that can impact the timely completion of the project or can cause the project to be stalled for an extended period of time. If selecting Yes, explain in brief.

Instructions for Manufacturers of Eligible Renewable Energy Products or Microturbines

User Input Calculated or from other tab Instructions are in yellow boxes next to the Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Annual Attributable Producti	Annual Attributable Production Capacity (AAPC)				
Descriptor	Data	Units	Notes/Instructions		
Annual Production Capacity		MW/year	Expected annual production. Use electrical technologies such as se components without watt rating the amount of watts of the end p component, and state your assu		
Conversion Factor and Explanation			For non-watt rated technologies factor (e.g., square meters to wa		
Manufacturing Contribution		\$/W	Value added contribution to syst feedstock materials, upstream c		
Total System Hardware Price		\$/W	Price to end user of total system system but excluding installation		
Typical Annual Capacity Factor		%	See Assumptions tab for commo assumptions of typical use. Defir output)/(peak power rating * 87 capacity factor, please justify in		
Share of facility output		%	Fraction of production from proj that will be allocated for renewa		

corresponding inputs

	EXAMPLE	
	Descriptor	Data
e equivalent watts for non- olar water heating. For s, make an assumption about product per unit of your mptions below.	Annual Production Capacity	50
ONLY, explain your conversion atts) in 50 words or less.	Conversion Factor and Explanation	N/A
tem (excludes price paid for omponents, etc.).	Manufacturing Contribution	0.06
hardware including balance of labor costs.	Total System Hardware Price	0.64
n capacity factors, based on ned as (annual energy 60 hours). If you use a different the narrative.	Typical Annual Capacity Factor	25%
ject (i.e., manufacturing facility) Ible resource production.	Share of facility output	100%

Units	Notes/Instructions
MW/year	Facility produces 50 MW of c-Si solar PV cells per year for small- scale residential developers.
	Not applicable; technology is already rated in watts.
\$/W	Cost to produce a c-Si solar PV cell is \$0.18/W, including margin, but cost of inputs is about \$0.12/W. So value add is \$0.06/W.
\$/W	Total hardware cost of solar module and BOS (NREL, 2022).
%	Average U.S. capacity factor of solar PV is 25%, per the <i>Assumptions</i> tab.
%	All of the facility's production goes to solar cell manufacturing.

Instructions for Manufacturers of Eligible Renewable Energy Products or Microturbines

User Input Calculated or from other tab Instructions are in yellow boxes next to the Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Annual Attributable Producti	Annual Attributable Production Capacity (AAPC)				
Descriptor	Data	Units	Notes/Instructions		
Annual Production Capacity		MW/year	Expected annual production. Use electrical technologies such as se components without watt rating the amount of watts of the end p component, and state your assu		
Conversion Factor and Explanation			For non-watt rated technologies factor (e.g., square meters to wa		
Manufacturing Contribution		\$/W	Value added contribution to syst feedstock materials, upstream c		
Total System Hardware Price		\$/W	Price to end user of total system system but excluding installation		
Typical Annual Capacity Factor		%	See Assumptions tab for commo assumptions of typical use. Defir output)/(peak power rating * 87 capacity factor, please justify in		
Share of facility output		%	Fraction of production from proj that will be allocated for renewa		

corresponding inputs

	EXAMPLE	
	Descriptor	Data
e equivalent watts for non- olar water heating. For s, make an assumption about product per unit of your mptions below.	Annual Production Capacity	50
ONLY, explain your conversion atts) in 50 words or less.	Conversion Factor and Explanation	N/A
tem (excludes price paid for omponents, etc.).	Manufacturing Contribution	0.06
hardware including balance of labor costs.	Total System Hardware Price	0.64
n capacity factors, based on ned as (annual energy 60 hours). If you use a different the narrative.	Typical Annual Capacity Factor	25%
ject (i.e., manufacturing facility) Ible resource production.	Share of facility output	100%

Units	Notes/Instructions
MW/year	Facility produces 50 MW of c-Si solar PV cells per year for small- scale residential developers.
	Not applicable; technology is already rated in watts.
\$/W	Cost to produce a c-Si solar PV cell is \$0.18/W, including margin, but cost of inputs is about \$0.12/W. So value add is \$0.06/W.
\$/W	Total hardware cost of solar module and BOS (NREL, 2022).
%	Average U.S. capacity factor of solar PV is 25%, per the <i>Assumptions</i> tab.
%	All of the facility's production goes to solar cell manufacturing.

Instructions for Manufacturers of Eligible Refining, Blending, or Electrolyzing Equipment or Fuel Ce

User Input Calculated or from other tab Instructions are in yellow boxe Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Fuel Type/Process		Select the electrolyzii

Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Unit/year	Projected manufactu
Manufacturing Contribution		\$/Unit	Value adde feedstock
Total Installed System Price		\$/Unit	Price to en system bu
Capacity per unit per year		GGE	Amount of refining, el expressed MW, or ot MJs.
Deployed Property Lifetime		Err:509 years	Number of
Share of Facility Output		13 %	Fraction of allocated t Please typ convert to

lls

ructions

red annually.

es next to the corresponding inputs

most representative fuel refining, blending, or ng process.

Fuel Type/Process

EXAMPLE

Descriptor Annual Production Capacity

ed contribution to system (excludes price paid for materials, upstream components, etc.).

(not peak or potential) number of units

d user of total system hardware including balance of texcluding installation labor costs.

fuel, chemical, or product enabled the given unit of ectrolyzing, or blending equipment annually, best in gallons of gasoline equivalent (GGE). Kilograms, her units should be converted to GGE using BTUs or

years the deployed equipment will operate.

project (i.e., manufacturing facility) that will be o eligible equipment.

e in a percentage (no greater than 100) -- we will not a percentage. Manufacturing Contribution

Total Installed System Price

Capacity per unit per year

Deployed Property Lifetime

Share of Facility Output

Alcohol to jet from isobutanol - fermentation - corn grain/starch	The electrolyzers will run on renewable electricity, so the applicant selects the LCA for "renewable electrolysis." This is equivalent to a 100% reduction in emissions per GGE.

Data	Units	Notes/Instructions
	50 Unit/year	Applicant produces 1000 1-MW electrolyzers at its new facility.
	50,000 \$/Unit	Electrolyzers are sold for \$100,000 each, but use \$50,000 worth of platinum group metals and other inputs, so the value added by the manufacturer is \$50,000.
	1,000,000 \$/Unit	The full hydrogen electrolysis system is estimated at \$1 million for a 1-MW capacity electrolyzer.
	150,000 GGE	A 1-MW electrolyzer could be expected to produce about 150,000 kg of hydrogen per year under typical operating conditions.
	10 years	Electrolyzers are expected to last about 10 years before replacement.
	100 %	100% of the facility will be used to produce clean hydrogen.

Instructions for Manufacturers of Energy Storage Systems

User Input Calculated or from other tab Instructions are in yellow boxes next Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Annual Attributable Product	Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Instructions	
Annual Production Capacity		MW/year	Expected annual produ production capacity in output of the batteries watt ratings, make an a the end product per ur assumptions below.	
Conversion Factor and Explanation			For non-watt rated tec factor (e.g., square me	
Manufacturing Contribution		\$/kWh	Value added contributi feedstock materials, ui	
Total System Hardware Price		\$/kWh	Price to end user of top system but excluding in	
Typical Annual Capacity Factor		%	See Assumptions tab for assumptions of typical output)/(peak power r capacity factor, please	
Share of facility output		%	Fraction of production that will be allocated for	

to the corresponding inputs

Iction. Facilities that typically express their Megawatt-Hours should instead state power in Megawatts. For components without assumption about the amount of watts of nit of your component, and state your

hnologies ONLY, explain your conversion ters to megawatt-hours) in 50 words or less.

ion to system (excludes price paid for ostream components, etc.).

tal system hardware including balance of nstallation labor costs.

or common capacity factors, based on use. Defined as (annual energy ating * 8760 hours). If you use a different justify in the narrative.

from project (i.e., manufacturing facility) or renewable resource production.

EXAMPLE

Descriptor

Annual Production Capacity

Conversion Factor and Explanation

Manufacturing Contribution

Total System Hardware Price

Typical Annual Capacity Factor

Share of facility output

Data	Units	Notes/Instructions
	100 MW/year	Lithium-ion battery factory assembles 200 MWh of 2-hour duration batteries for stationary storage applications. Those batteries represent 100 MW of power.
N/A		N/A
	\$50 \$/kWh	Manufacturer adds \$50/kWh of value in assembling the battery cell and pack.
	\$400 \$/kWh	Total price of the installed system is \$400/kWh.
	10% %	Capacity factor of stationary storage, according to the Assumptions tab.
	100% %	100% of the factory is being used for battery production.

Instructions for Manufacturers of Eligible Electric, Fuel Cell, and Hybrid Vehicles and Components (

User Input Calculated or from other tab Instructions are in yellow boxe Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Unit/year	Projected (manufactu
Manufacturing Contribution		\$/Unit	Value adde feedstock i
Total Price of Vehicle Equipment		\$/Unit	Price to en system but
Deployed Property Lifetime	Err:509	years	Number of
Share of facility output		%	Fraction of that will be Please typ

The following formulas calculate the greenhouse gas emissions reductions associated with the project.

Indirect Greenhouse Gas Reductions and	Indirect Greenhouse Gas Reductions and Simplified Cost of Abatement			
Descriptor	Data	Units	Notes/Inst	
Average Annual Mileage		Miles/year	List the ave for both th Assumptio	
Annual Baseline System Fuel Consumption		MPGGE	Projected I equivalent (e.g., avera	
Annual Improved System Fuel Consumption		MPGGE	Projected I typical ope duty vehicl below. If p	

Miles per kWh		If electric c typical ope

excl. charging equipment)

es next to the corresponding inputs

:ructions

(not peak or potential) number of units red annually.

ed contribution to system (excludes price paid for materials, upstream components, etc.).

d user of total system hardware including balance of texcluding installation labor costs.

years the deployed equipment will operate.

production from project (i.e., manufacturing facility) allocated to produce vehicle technology.

e in a percentage (no greater than 1) -- we will not

EXAMPLE

Descriptor Annual Production Capacity

Manufacturing Contribution

Total Price of Vehicle Equipment

Deployed Property Lifetime

Share of facility output

ructions

erage annual operations of the class of vehicle, used le baseline and the improved system. Use the *ns* tab as needed.

iquid fuel consumption in gallons of gasoline (GGE) of baseline system under typical operation age fuel economy of a heavy-duty vehicle).

iquid fuel consumption of improved system under ration (e.g., average fuel economy of a hybrid heavyle). If fully electric, enter "0" and fill out the row lugin hybrid, fill out both rows.

EXAMPLE

Descriptor Annual Mile

Annual Baseline System Fuel Consumption

Annual Improved System Fuel Consumption

or plug-in hybrid, state the required electricity under eration (e.g., average MPGe of an electric vehicle).

Miles per kWh

Data	Units	Notes/Instructions
	100,000 Unit/year	Applicant produces 100,000 EV batteries per year at its 10 GWh factory.
	\$6,000 \$/Unit	Finished battery is sold for \$12,000, but inputs and subcomponents cost \$6,000, so the "manufacturing contribution" of this facility is \$6,000.
	\$25,000 \$/Unit	Total price of electric vehicle is \$25,000.
	20 years	Assumed EV lifetime is 20 years.
	90% %	90% of the facility's output goes to EVs, 10% to consumer electronics.

Data	Units	Notes/Instructions
	10,850 Miles	Per Assumptions tab, presumes the vehicle class has a annual mileage of 10,850 miles.
	23 GGE/year	Per Assumptions tab, presumes the baseline system gets 23.4 miles per gallon.
	0 GGE/year	Presumes the improved system uses no liquid fuel.

The improved system uses electricity and gets roughly 3 miles per kWh.

Instructions for Manufacturers of Eligible Grid Modernization Equipment and Electric Vehicle Charg

User Input Calculated or from other tab Instructions are in yellow boxe Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Units, kVA, etc. per year	Projected (i manufactui terms of pc raw numbe
Manufacturing Contribution		\$/Unit	Value adde feedstock n
Total Price of Equipment		\$/Unit	Price to end system but
Typical Annual Capacity Factor		%	See Assum assumptior output)/(pe capacity fac
Share of facility output		%	Fraction of that will be
			Please type

ing Equipment

s next to the corresponding inputs

ructions

not peak or potential) number or capacity of units red annually. If possible, express the total capacity in ower capacity (e.g., kVA for transformers) rather than er of units.

d contribution to system (excludes price paid for naterials, upstream components, etc.).

d user of total system hardware including balance of excluding installation labor costs.

otions tab for common capacity factors, based on is of typical use. Defined as (annual energy eak power rating * 8760 hours). If you use a different ctor, please justify in the narrative.

production from project (i.e., manufacturing facility) allocated to produce vehicle technology.

in a percentage (no greater than 1) -- we will not

EXAMPLE

Descriptor Annual Production Capacity

Manufacturing Contribution

Total Price of Equipment

Typical Annual Capacity Factor

Share of facility output

Data	Units	Notes/Instructions
	2,000 MVA/year	Projected (not peak or potential) number or capacity of units manufactured annually. If possible, express the total capacity in electrical terms (e.g., kVA for transformers) rather than raw number of units.
	1,000,000 \$/Unit	The manufacturer purchases \$500,000 of raw materials for each LPT, but sells each one for \$1.5 million, so generates \$1 million of value in the process.
	1,500,000 \$/Unit	The total value of the completed LPT is \$1.5 million
	65% %	Average U.S. capacity factor of transmission equipment is 65%, per the <i>Assumptions</i> tab.
	100% %	We assume all of the facility output is for LPTs.

Product and Process

Alcohol to jet from ethanol - gasification - municipal solid waste Alcohol to jet from ethanol - fermentation - corn grain/starch Alcohol to jet from ethanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - corn grain/starch Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - corn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn stover Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - tallow/animal fat	Gasoline
Alcohol to jet from ethanol - fermentation - corn grain/starch Alcohol to jet from ethanol - fermentation - industrial off-gases Alcohol to jet from isobutanol - fermentation - corn grain/starch Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - forest residue Alcohol to jet from isobutanol - fermentation - forest residue Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn stover Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - tallow/animal fat	Alcohol to jet from ethanol - gasification - wood waste
Alcohol to jet from ethanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - industrial off-gases Alcohol to jet from isobutanol - fermentation - corn grain/starch Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - forest residue Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biome	Alcohol to jet from ethanol - gasification - municipal solid waste
Alcohol to jet from ethanol - fermentation - industrial off-gases Alcohol to jet from isobutanol - fermentation - corn grain/starch Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - forest residue Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - corn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn stover Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentat	Alcohol to jet from ethanol - fermentation - corn grain/starch
Alcohol to jet from isobutanol - fermentation - corn grain/starch Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - orn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable naphtha/gasoline<	Alcohol to jet from ethanol - fermentation - corn stover
Alcohol to jet from isobutanol - fermentation - corn stover Alcohol to jet from isobutanol - fermentation - forest residue Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - corn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable naphtha/gasoline	Alcohol to jet from ethanol - fermentation - industrial off-gases
Alcohol to jet from isobutanol - fermentation - forest residue Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - forest residue Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable naphtha/gasoline	Alcohol to jet from isobutanol - fermentation - corn grain/starch
Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable naphtha/gasoline	Alcohol to jet from isobutanol - fermentation - corn stover
Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - corn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Alcohol to jet from isobutanol - fermentation - forest residue
Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil Hydroprocessed ethers and fatty acids (HEFA) - corn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - woody energy crops Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass
Hydroprocessed ethers and fatty acids (HEFA) - corn oil Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - woody energy crops Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable naphtha/gasoline	Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat
Hydroprocessed ethers and fatty acids (HEFA) - soybean oil Fischer-tropsch - forest residue Fischer-tropsch - woody energy crops Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil
Fischer-tropsch - forest residue Fischer-tropsch - woody energy crops Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - manure Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Hydroprocessed ethers and fatty acids (HEFA) - corn oil
Fischer-tropsch - woody energy crops Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Hydroprocessed ethers and fatty acids (HEFA) - soybean oil
Fischer-tropsch - miscanthus, switchgrass Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Fischer-tropsch - forest residue
Fischer-tropsch - municipal solid waste Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Fischer-tropsch - woody energy crops
Ex-situ catalytic fast pyrolysis (CFP) - woody biomass Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Fischer-tropsch - miscanthus, switchgrass
Ethanol - fermentation - corn grain/starch Ethanol - fermentation - corn stover Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Fischer-tropsch - municipal solid waste
Ethanol - fermentation - corn stoverEthanol - gasification w/ syngas fermentation - corn stoverEthanol - gasification w/ syngas fermentation - forest residueEthanol - gasification w/ syngas fermentation - switchgrassEthanol - gasification w/ syngas fermentation - municipal solid wasteEthanol - gasification w/ syngas fermentation - wood wasteEthanol - gasification w/ syngas fermentation - wood wasteEthanol - gasification w/ syngas fermentation - industrial waste gasBiodiesel/FAME - tallow/animal fatBiodiesel/FAME - used cooking oilBiodiesel/FAME - cellulosic feedstocksRenewable natural gas/biomethane - landfill gasRenewable natural gas/biomethane - manureRenewable naphtha/gasoline	Ex-situ catalytic fast pyrolysis (CFP) - woody biomass
Ethanol - gasification w/ syngas fermentation - corn stover Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - fermentation - corn grain/starch
Ethanol - gasification w/ syngas fermentation - forest residue Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - fermentation - corn stover
Ethanol - gasification w/ syngas fermentation - switchgrass Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - gasification w/ syngas fermentation - corn stover
Ethanol - gasification w/ syngas fermentation - municipal solid waste Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - gasification w/ syngas fermentation - forest residue
Ethanol - gasification w/ syngas fermentation - wood waste Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - gasification w/ syngas fermentation - switchgrass
Ethanol - gasification w/ syngas fermentation - industrial waste gas Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - gasification w/ syngas fermentation - municipal solid waste
Biodiesel/FAME - tallow/animal fat Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - gasification w/ syngas fermentation - wood waste
Biodiesel/FAME - used cooking oil Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Ethanol - gasification w/ syngas fermentation - industrial waste gas
Biodiesel/FAME - cellulosic feedstocks Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Biodiesel/FAME - tallow/animal fat
Renewable natural gas/biomethane - landfill gas Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Biodiesel/FAME - used cooking oil
Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Biodiesel/FAME - cellulosic feedstocks
Renewable natural gas/biomethane - manure Renewable propane Renewable naphtha/gasoline	Renewable natural gas/biomethane - landfill gas
Renewable naphtha/gasoline	Renewable natural gas/biomethane - manure
	Renewable propane
Gaseous hydrogen - renewable electrolysis	Renewable naphtha/gasoline
	Gaseous hydrogen - renewable electrolysis

Propane
Diesel and home heating fuel (distillate fuel oil)
Kerosene
Coal
Natural gas

Grid electricity

ī

Renewable electricity from wind energy Renewable electricity from solar energy Renewable electricity from nuclear energy Renewable electricity from hydropower energy Renewable electricity from geothermal energy Renewable electricity from biomass energy Renewable electricity from marine energy Other

Technology Areas

Renewable resources - 48C(c)(1)(A)(i)(I) Fuel cells, microturbines, or energy storage - 48C(c)(1)(A)(i)(II) Electric grid modernization - 48C(c)(1)(A)(i)(III) Property to capture, use, sequester CO2 - 48C(c)(1)(A)(i)(IV) Refining, electrolyzing, or blending equipment - 48C(c)(1)(A)(i)(V) Energy conservation - 48C(c)(1)(A)(i)(VI) Electric or fuel cell vehicles - 48C(c)(1)(A)(i)(VII) Hybrid vehicles not less than 14,000 lbs - 48C(c)(1)(A)(i)(VIII) Other - 48C(c)(1)(A)(i)(IX)

Renewable, Low- Carbon, or Low- Emissions Fuel, Chemical or Product		

Energy Fuels

Instructions for Manufacturers of Eligible Energy Conservation Equipment

User Input Calculated or from other tab Instructions are in yellow boxed Manufacturing facilities for eligible energy conservation equipment should complete each green cell on this taken the second second

Fuel Information		
Baseline Fuel Type/Process	If selected 'Other', explain here	Select the or electrol
Improved Fuel Type/Process	If selected 'Other', explain here	Select the blending, c projects, se fuel switch

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Unit/year	Projected (manufactu
Manufacturing Contribution		\$/Unit	Value adde feedstock
Total Price of Efficiency Equipment		\$/Unit	Price to en system but
Annual Baseline System Consumption		MMBTU/year	Likely annu (WITHOUT operation natural gas
Annual Improved System Consumption		MMBTU/year	Likely annu fuel switch (e.g., energ
Deployed Property Lifetime		years	See Assum assumption equipment
Share of Facility Output		%	Fraction of

es next to the corresponding inputs ab to indicate annual production. These metrics

most representative baseline fuel refining, blending, yzing process.

most representative improved/ new fuel refining, or electrolyzing process. For efficiency improvement elect the same fuel type/ process as the baseline if ing not applicable and explain efficiency

ructions

(not peak or potential) number of units red annually.

ed contribution to system (excludes price paid for materials, upstream components, etc.).

d user of total system hardware including balance of texcluding installation labor costs.

al energy consumption of baseline system fuel switching or efficiency technology) under typical (e.g., energy consumption of average home using sheating). Baseline system assumptions must match ations used in commercial viability section of concential energy consumption of improved system (AFTER ing or efficiency technology) under typical operation sy consumption of average home with air source heat ptions tab for common capacity factors, based on ns of typical use. Number of years the deployed t will operate.

production from project (i.e., manufacturing facility)

EXAMPLE

Baseline Fuel Type/Process

Improved Fuel Type/Process

EXAMPLE

Descriptor Annual Production Capacity

Manufacturing Contribution

Total Price of Efficiency Equipment

Annual Baseline System Consumption

Annual Improved System Consumption

Deployed Property Lifetime

Share of Facility Output

Natural Gas	The project manufactures heat pumps which are assumed to replace natural gas furnaces.
Grid electricity	Heat pumps are assumed to be powered by grid electricity.

Data	Units	Notes/Instructions
	10,000 Unit/year	Manufacturer produces 10,000 units of cold-climate air-source heat pumps
	\$3,500 \$/Unit	Heat Pumps are sold for \$5000 but incorporate \$1500 of input materials and components, so the manufacturer's contribution is \$3500 per unit.
	\$5,000 <i>\$/Unit</i>	Price to end user of total HVAC system hardware including balance of system but excluding installation labor costs.
	80 MMBTU/year	Annual energy consumption of the average building using natural gas furnance of comparable size to heat pump
	16 MMBTU/year	Cold climate heat pump is projected to reduce energy usage by 64 MMBTU
	10 years	Heat pumps average lifetime are 10 years
	100% %	All of the factory's output goes to producing heat pump

Instructions for Manufacturers of Carbon Capture, Removal, Use, and Storage or Other Greenhouse

User Input Calculated or from other tab Instructions are in yellow boxe Applicants should complete ONLY ONE TAB per application on the basis of their technology area.

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Unit/year	Projected (annually.
Manufacturing Contribution		\$/Unit	Value adde feedstock r
Total Cost of Emissions Reduction Component		\$/Unit	Price to end including ba
CO2e Reduction Per Unit		Metric tons CO2e	Annual CO2 equipment "CO2 Equiv
Deployed Property Lifetime	Err:509		Number of
Share of Facility Output		%	Fraction of that will be

Gas Reduction Equipment

s next to the corresponding inputs

ructions

not peak or potential) number of units manufactured

d contribution to system (excludes price paid for naterials, upstream components, etc.).

d user of total system hardware (e.g., full CCS system) alance of system but excluding installation labor costs.

2-equivalent emissions reductions per unit deployed. For that reduces non-CO2 emissions, applicants can use the alency Assumptions" on the Assumptions tab.

years the deployed equipment will operate.

production from project (i.e., manufacturing facility) allocated to produce energy efficiency technology.

Annual Attributable Production Capacity

Descriptor Annual Production Capacity

Manufacturing Contribution

Total Cost of Emissions Reduction Component

CO2e Reduction Per Unit

Deployed Property Lifetime

Share of Facility Output

(AAPC)		
Data	Units	Notes/Instructions
	100,000 Unit/year	A manufacturer projects that its new factory will produce 100,000 gallons of a solvent that can be used in carbon capture systems.
	450 \$/Unit	Value added contribution to system (excludes price paid for feedstock materials, upstream components, etc.).
	5,000 \$/Unit	The full price of the functional CCS apparatus is estimated at \$5,000 per gallon of solvent.
	100 Metric tons CO2e	Each gallon of solvent is expected to reduce 1,000 metric tons of CO2e per year.
	1 years	The solvent is expecteed to last 20 years before replacement
	50% %	Half of the facility's solvent will be sold into the cleaning products market, so only 50% of the facility's output is dedicated to eligible technologies.

Instructions for Recyclers of Qualified Energy Properties			
User Input	Calculated or from other tab Instructions are in yellow		
Recycling facilities of qualified energy properties should complete each green cell on this tab to indicate an (input) and the products (output) and associated production information. Applicants may reference the exa			
Fuel Information			
Input Technology Area		If selected 'Other', explain here	
Output Technology Area		If selected 'Other', explain here	
Annual Attributable Production Capacity (AAPC)			

Descriptor	Data	Units
Recovery Rate		Mass/Unit
Annual Production Capacity		Unit/year

oxes next to the corresponding inputs

al production. These metrics include the recycled properties nple to the right and/or the Assumptions tab for assistance.

Select the most representative technology area for the recycling input. If the input is a critical material, use the critical material data sheet and application

Select the most representative technology area for the recycling output. If the output is a critical material, fill out the critical material data sheet

Notes/Instructions Projected (not peak or potential) recovered rate

Projected (not peak or potential) number of output units produced. Fill in the Unit column with the appropriate unit e.g. MWh, tonnes, etc

EXAMPLE			
Input Technology Area	Electric or fuel cell vehicles - 48C(c)(1) (A)(i)(VII)	If selected 'Other', explain here	Select the recycling ir material da
Output Technology Area	Electric or fuel cell vehicles - 48C(c)(1) (A)(i)(VII)	If selected 'Other', explain here	Select the recycling ir and write i

EXAMPLE				
Descriptor	Data		Units	Notes/Inst
Recovery Rate		0.5	g Li/battery cell	Projected (
Annual Production Capacity		100,000	kg Li/year	Manufactu batteries ir

most representative technology area for the nput. If the input is a critical material, use the critical ata sheet and application

most representative technology area for the put. If the output is a critical material, select other n the critical material

:ructions

(not peak or potential) recovered rate

rer produces 100,000 kg of of Lithium from recycled

Instructions for Manufacturers of Other Greenhouse Gas Reduction Equipment

User Input

Calculated or from other tab

Instructions are in yellow bo

Manufacturing facilities for other equipment designed to reduce greenhouse gas emissions should comp production. These include metrics to understand the performance of the product in its ultimate use. App and/or the Assumptions tab for assistance.

Provide Brief Description of Output	In 10 word
	and how it

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Base Unit		Unit	Describe the
Annual Production Capacity		Unit/year	Projected (
Manufacturing Contribution		\$/Unit	Value adde
Total Cost of Emissions Reduction Component		\$/Unit	Price to en system) include
CO2e Reduction Per Unit		Metric tons CO2e/unit	Annual CO For equipn
Deployed Property Lifetime		years	See Assum assumption equipment
Share of Facility Output		%	Fraction of that will be

xes next to the corresponding inputs lete each green cell on this tab to indicate annual plicants may reference the example to the right

s or less, describe what product the facility produces reduces greenhouse gas emissions

:ructions

ne unit of production

(not peak or potential) number of units

ed contribution to system (excludes price paid for

d user of total system hardware (e.g., full CCS cluding balance of system but excluding installation

2-equivalent emissions reductions per unit deployed. nent that reduces non-CO2 emissions, applicants can O2 Equivalency Assumptions" on the Assumptions ptions tab for common capacity factors, based on ns of typical use. Number of years the deployed t will operate.

production from project (i.e., manufacturing facility) allocated to produce energy efficiency technology.

Annual Attributable Production Ca

Descriptor

Base Unit

Annual Production Capacity

Manufacturing Contribution

Total Cost of Emissions Reduction Component

CO2e Reduction Per Unit

Deployed Property Lifetime

Share of Facility Output

apacity (AAPC)		
Data	Units	Notes/Instructions
gallon	Unit	Describe the unit of production
100,000	Unit/year	A manufacturer projects that its new factory will produce
450	\$/Unit	Value added to affibation to system becuades proceeding to ture
5,000	\$/Unit	freehung heelof interfunctional components siscestimated at \$5,000 per gallon of solvent.
100	Metric tons CO2e	Each gallon of solvent is expected to reduce 1,000 metric tons of CO2e per year.
20	years	The solvent is expecteed to last 20 years before replacement
50%	%	Half of the facility's solvent will be sold into the cleaning products market, so only 50% of the facility's output is dedicated to eligible technologies.

Baseline Cost Metrics and Conversion Factors		
Metric	Value	
Average U.S. Retail Electricity Rates (2021)		
Residential	11.8	
Commercial	10.29	
Utility	6.88	
Average U.S. Gasoline Prices (2021)	3.35	
Average Electricity Emissions (2021)	0.709	
Average Gasoline Emissions (2021) (gCO2e/MJ of GGE)	93	
Average Natural Gas Emissions		
MJ per gallon of gasoline	120	
BTUs per gallon of gasoline	114,000	
Annual Miles Traveled (average new light-duty vehicle)	10,850	
Baseline Vehicle Fuel Economy	24	
Vehicle Cost (2021 average new light-duty vehicle)	42,000	

Renewable, Low-Carbon, or Low-Emissions Fuel, Chemical or Product

Product and Process

Core LCA (gCO2e/MJ) Data from ICAO & ANL GREE

	Data from ICA	AO & ANL GREI
Gasoline		93
Alcohol to jet from ethanol - gasification - wood waste	TBD	
Alcohol to jet from ethanol - gasification - municipal solid waste	TBD	
Alcohol to jet from ethanol - fermentation - corn grain/starch		65.7
Alcohol to jet from ethanol - fermentation - corn stover	TBD	
Alcohol to jet from ethanol - fermentation - industrial off-gases	TBD	
Alcohol to jet from isobutanol - fermentation - corn grain/starch		55.8
Alcohol to jet from isobutanol - fermentation - corn stover	TBD	
Alcohol to jet from isobutanol - fermentation - forest residue		23.8
Alcohol to jet from isobutanol - fermentation - miscanthus, switchgrass		43.4
Hydroprocessed ethers and fatty acids (HEFA) - tallow/animal fat		22.5
Hydroprocessed ethers and fatty acids (HEFA) - used cooking oil		13.9
Hydroprocessed ethers and fatty acids (HEFA) - corn oil		17.2
Hydroprocessed ethers and fatty acids (HEFA) - soybean oil		40.4
Fischer-tropsch - forest residue		8.3
Fischer-tropsch - woody energy crops		12.2
Fischer-tropsch - miscanthus, switchgrass		10.4
Fischer-tropsch - municipal solid waste		5.2
Ex-situ catalytic fast pyrolysis (CFP) - woody biomass	TBD	
Ethanol - fermentation - corn grain/starch	TBD	
Ethanol - fermentation - corn stover	TBD	
Ethanol - gasification w/ syngas fermentation - corn stover	TBD	
Ethanol - gasification w/ syngas fermentation - forest residue	TBD	
Ethanol - gasification w/ syngas fermentation - switchgrass	TBD	
Ethanol - gasification w/ syngas fermentation - municipal solid waste	TBD	
Ethanol - gasification w/ syngas fermentation - wood waste	TBD	
Ethanol - gasification w/ syngas fermentation - industrial waste gas	TBD	
Biodiesel/FAME - tallow/animal fat	TBD	
Biodiesel/FAME - used cooking oil	TBD	

Biodiesel/FAME - cellulosic feedstocks	TBD
Renewable natural gas/biomethane - landfill gas	TBD
Renewable natural gas/biomethane - manure	TBD
Renewable propane	TBD
Renewable naphtha/gasoline	TBD
Gaseous Hydrogen - Renewable Electrolysis	0

Common Service Life Assumptions		
Technology	Service Life Years	
General suggestion (for technologies excluded below)	20	
Distributed Solar Photovoltaics - Modules	26	
Distributed Solar Photovoltaics - Inverters	21	
Distributed Wind	20	
Battery Storage - Cells	10	
Battery Storage - String Inverters	15	
Fuel Cell	10	
Micro Turbine	10	
Air-Source Heat Pump	9 to 22	
Electric Rooftop Heat Pump	21	
Ground-Source Heat Pump	8 to 21	
Grid Modernization Equipment	25	
Light-duty Vehicle	16	
Utility-scale PV	30	
Utility-scale Wind	30	
Utility-scale Fuel Cells	30	
Utility-scale Combustion Turbines	30	

Common Capacity Factor Assumptions	
End Use Energy Product (Technology)	Capacity Factor (%)
Biomass (general)	52%
Geothermal	73%
Grid - Transmission/Transportation	65%
Grid Equipment - Interconnection	80%
Landfill gas utilization (general)	80%
Solar Thermal	28%
Solar Photovoltaic (general)	20%
Storage	10%
Storage – Pumped Hydro	N/A
Storage – Adv. Batteries	10%
Storage – Flywheel	N/A
Wind	44%
Wind – Offshore	42%

CO2 Equivalency Assumptions	
Original Metric	CO2e Emissions (metric ton
Metric ton of CO2	1
Metric ton of Methane	22.7
Metric ton of Nitrous Oxide	270

Metric ton of HFCs/PFCs	Various (use EPA calculator
Metric ton of SF6	20,684
Gallon of gasoline avoided	0.009
Megawatt-hour of electricity avoided	0.709

Source: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Units
cents/kWh
cents/kWh
c/kWh
\$/gallon
metric tons CO2e/MWh
gCO2e/MJ of GGE
MJ/GGE
BTU/GGE
miles
mpg
\$

Reduction from Gasoline

	0%
	#VALUE!
	#VALUE!
	-29%
	#VALUE!
	#VALUE!
	-40%
	#VALUE!
	-74%
	-53%
<u>-</u>	-76%
	-85%
	-82%
	-57%
	-91%
	-87%
	-89%
	-94%
	#VALUE!

ΞT

#VALUE!
#VALUE!
#VALUE!
#VALUE!
#VALUE!
-100%

Notes
https://www.eia.gov/analysis/studies/buildings/dg_storage_chp/
https://www.eia.gov/analysis/studies/buildings/equipcosts/
https://www.eia.gov/analysis/studies/buildings/equipcosts/
https://www.eia.gov/analysis/studies/buildings/equipcosts/

Note: Utility-scale technologies are evaluated using a 30-year investment recovery period. However, these technologies will remain in service as long as going-forward revenues (system value) exceed going-forward costs (variable and fixed operating costs). Thus actual service life may be shorter-than or substantially longer than 30-years.

Notes

Fleet capacity factor in 2021 Fleet capacity factor in 2021

Fleet capacity factor in 2021

Based on NEMS EMM Region 20 WECC Southwest

Based on ac kWh delivered and dc watts rated power (Use 25% if ac-to-ac)

Based on NEMS EMM Region 18 and 19: Southwest Power Pool Central and North

Based on NEMS EMM Region 7 NPCC New England

below)