Instructions for Applicants

User Input Calculated or from other tab
This worksheet is used to capture information on Clean Energy Manua

First, applicants should fill out the relevant user input (green) cells in t

Next, applicant should proceed to the yellow tab that is specific to the

Section	Applicant Information
Project Overview	Applicant Case Number
	Company Name
	City (HQ)
	State (HQ)
	Zip Code (HQ)
	City (Facility)
	State (Facility)
	Zip Code (Facility)
	Qualified Investment (\$)
	Expected Credit Rate
	Tax Credit (\$)
	Production or Recycling
	Specified Advanced Energy Property (SAEP)
	Primary Facility Product
	Technology Readiness Level
	Secondary Specified Advanced Energy Property, if applicable
	Secondary non SAEP property, if applicable
Project/Business Plan	Date Complete Permitting

	Date Begin Construction
	Date Begin Operation
	Is this project being considered or planning to apply to local, state, or other federal agency programs?
	If Yes, briefly explain funding:
Jobs	Direct Construction Jobs
	Meet Wage and Apprenticeship Requirements?
	Direct Operating Jobs

Instructions are in yellow boxes next to the corresponding inputs facturing and Recycling project proposals. Input data and assumptions should be substantiated in a

the Project Overview tab.

eir primary technology area to submit additional details on production capacity.

Input	Units	Notes	
		The case number used	
		Dollar amount of the q in 48C(b).	
		Applicants should selec	
		requirements under 48	
		should select 6% from t	
0		Calculated by multiplyi	
		Indicate whether the p	
		a recycling project, alsc	
		Every application can o	
		yellow tab). If applicant	
		here. If Primary SAEP is	
		Brief description of the	
		turbine blades"). The d	
		Cubrait the Technology	
		scale, see here: https://	
		,,p-w,,	
		For projects that utilize	
		secondary SAEP(s) here	
		not for any secondary t	
		For facilities that utilize	
		describe the products h	
	mm/dd/vvvv		

mm/dd/yyyy	
mm/dd/yyyy	
	Examples include other agencies, and state or l
FTE equivalent	Quantify the number o
	Do the construction job guidance?
FTE equivalent	Quantify the number o retrofits/reequipped fa

and show clear correspondence to applicant's project narrative.

to track the application in the DOE 48C application portal

ualified investment that "re-equips, expands, or establishes" the facility, as defined

t a 30% tax credit if they anticipate meeting the wage and apprenticeship IC(e)(5) and (6). Applicants who do not anticipate meeting those requirements the dropdown.

ng Qualified Investment by Expected Credit Rate.

roject is primarily in producing or recycling eligible advanced energy property. If it is complete the Recycling Tab.

nly choose one Specified Advanced Energy Property (and fill out the corresponding ts serves multiple SAEP, select the yellow thet best fit your intended *primary SAEP* Other, also complete the Other tab.

facility product that is an output of the facility in 5 words or less (e.g., "wind istinction between SAEP and Facility Product is defined in Appendix B of the notice.

Readiness Level (1-9) of the primary facility product. For a definition of the TRL /www.nasa.gov/pdf/458490main_TRL_Definitions.pdf

any portion of the qualified investment to produce multiple Specified Advanced licants should identify a primary technology output above, but may briefly list Applicants should only fill out one yellow tab for the primary technology area and technology areas.

any portion of the qualified investment to produce non-SAEP, please briefly nere.

r federal tax credits, grants from the Department of Energy or other federal ocal economic development incentives.

f direct jobs that will be created during construction of the facility. Direct jobs are as meet wage and apprenticeship requirements, as specificed in 48C(e) and treasury

f direct jobs that will be created during operation of the facility. For cilities, only include the number of additional operating jobs created by the project.

Instructions for Manufacturers of Eligible Renewable Energy Products

User Input Calculated or from other tab Instructions are in yellow boxes next to the Manufacturing facilities for renewable energy products or microturbines should complete each green cell on the production. These metrics include rating factors that describe the performance of the product in its ultimate u the example to the right and/or the Assumptions tab for assistance.

Annual Production			
Descriptor	Data	Units	Notes/Instructions
Identify Primary Renewable Property Type			Select the eligible property type
If "other renewable property", please specify here			If you selected "other renewable specify the name here
Annual Production Capacity		MW/year	Expected annual production. Use electrical technologies such as se components without watt rating the amount of watts of the end p component, and state your assu
Conversion Factor and Explanation			For non-watt rated technologies factor (e.g., square meters to wa
Manufacturing Contribution		\$/W	Value added contribution to syst feedstock materials, upstream c
Total System Hardware Price		\$/W	Price to end user of total system system but excluding installation
Typical Annual Capacity Factor		%	See Assumptions tab for commo assumptions of typical use. Defir output)/(peak power rating * 87 capacity factor, please justify in value between 0 and 1.
Share of Facility Output		%	Fraction of production from proj that will be allocated to eligible must be a value between 0 and
Deployed Property Lifetime		years	See Assumptions tab for commo assumptions of typical use. Num equipment will operate.

corresponding inputs his tab to indicate annual se. Applicants may reference

being produced at the facility

e property" in row 7, please

e equivalent watts for nonolar water heating. For s, make an assumption about product per unit of your mptions below.

ONLY, explain your conversion atts) in 50 words or less.

tem (excludes price paid for omponents, etc.).

hardware including balance of labor costs.

n capacity factors, based on ned as (annual energy '60 hours). If you use a different the narrative. Entries must be a

ect (i.e., manufacturing facility) equipment production. Entries 1.

n capacity factors, based on ber of years the deployed

EXAMPLE

Descriptor

Identify Primary Renewable Property Type

If "other renewable property", please specify here

Annual Production Capacity

Conversion Factor and Explanation

Manufacturing Contribution

Total System Hardware Price

Typical Annual Capacity Factor

Share of Facility Output

Deployed Property Lifetime

Data Units	Notes/Instructions
Property that produces energy from the wind - 48C(c)(1)(A)(i)(I)	Forged offshore wind tower flanges
375 MW/year	See example conversion explanation below
Facility produces 200 flanges a year, 2 flanges used per tower section, 4 tower sections per turbine, assume 15 MW wind turbine.	
0.003 \$/W	Tower contributes \$0.15/W (NREL 2022). While flanges make up ~8% of value, the specific steel manufacturing only contributes 1/4 value add for 2% contribution to towers
3.16 \$/W	Total hardware cost of offshore wind turbine and BOS (NREL, 2022).
42% %	Average U.S. capacity factor of offshore wind is 42%, per the <i>Assumptions</i> tab.
80% %	Most of the facility's production goes to offshore wind turbine tower flanges, but some is reserved for other applications. Applicant would indicate this in the Project Overview under secondary non-SAEP property.
30 years	Assumed offshore wind system lifetime is 30 years, per the assumptions tab

Instructions for Manufacturers of Eligible Microturbines

User Input Calculated or from other tab Instructions are in yellow boxes next to the Manufacturing facilities for microturbines should complete each green cell on this tab to indicate annual produrating factors that describe the performance of the product in its ultimate use. Applicants may reference the e Assumptions tab for assistance.

Annual Production			
Descriptor	Data	Units	Notes/Instructions
Annual Production Capacity		MW/year	Expected annual production. Use electrical technologies such as se components without watt rating the amount of watts of the end j component, and state your assu
Conversion Factor and Explanation			For non-watt rated technologies factor (e.g., square meters to wa
Manufacturing Contribution		\$/W	Value added contribution to syst feedstock materials, upstream c
Total System Hardware Price		\$/W	Price to end user of total system system but excluding installation
Typical Annual Capacity Factor		%	See Assumptions tab for commo assumptions of typical use. Defir output)/(peak power rating * 87 capacity factor, please justify in value between 0 and 1.
Share of facility output		%	Fraction of production from proj that will be allocated to eligible must be a value between 0 and
Deployed Property Lifetime		years	See Assumptions tab for commo assumptions of typical use. Num equipment will operate.

corresponding inputs Laction. These metrics include example to the right and/or the EXAMPLE

e equivalent watts for nonolar water heating. For s, make an assumption about product per unit of your mptions below.

ONLY, explain your conversion atts) in 50 words or less.

tem (excludes price paid for omponents, etc.).

hardware including balance of labor costs.

n capacity factors, based on ned as (annual energy '60 hours). If you use a different the narrative. Entries must be a

ect (i.e., manufacturing facility) equipment production. Entries 1.

n capacity factors, based on ber of years the deployed

EXAMPLE		
Descriptor	Data	
Annual Production Capacity		5
Conversion Factor and Explanation	N/A	
Manufacturing Contribution		\$1.50
Total System Hardware Price		\$3.00
Typical Annual Capacity Factor		60%
Share of facility output		100%
Deployed Property Lifetime		10

Units	Notes/Instructions
MW/year	Facility produces 5 MW of microturbines per year for combined heat and power systems in commercial and industrial applications.
	Not applicable; technology is already rated in watts.
\$/W	Cost to produce this microturbine system is roughly \$1,500/kW, or \$1.50/W.
\$/W	Total installed cost of the microturbine system is about \$3,000/kW, or \$3.00/W.
%	Manufacturer estimates the average capacity factor of their CHP systems is roughly 60%.
%	All of the facility's production goes to microturbine manufacturing.
years	Common service life of a microturbine is 10 years, per the Assumptions tab.

Instructions for Manufacturers of Fuel Cells

User Input Calculated or from other tab Instructions are in yellow boxe Manufacturing facilities for fuel cells should complete each green cell on this tab to indicate annual productio selection, as well as other metrics to understand the performance of the product in its ultimate use. Applicant Assumptions tab for assistance.

Fuel Type/Process	Alcohol to jet from ethanol - gasification - municipal solid waste	Select the

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Unit/year	Projected (manufactu
Manufacturing Contribution		\$/Unit	Value adde feedstock
Total Installed System Price		\$/Unit	Price to en system but
Capacity per unit per year		GGE	Capacity of gasoline ec should be o
Share of Facility Output		%	Fraction of allocated t
Deployed Property Lifetime		years	See Assum assumption equipment

es next to the corresponding inputs

n. These metrics include a "Fuel Type/Process" ts may reference the example to the right and/or the

most representative fuel type for the fuel cell.

Fuel Type/Process

ructions

(not peak or potential) number of units red annually.

ed contribution to system (excludes price paid for materials, upstream components, etc.).

d user of total system hardware including balance of texcluding installation labor costs.

f each fuel cells per year, best expressed in gallons of quivalent (GGE). Kilograms, MW, or other units converted to GGE using BTUs or MJs.

project (i.e., manufacturing facility) that will be o eligible equipment.

ptions tab for common capacity factors, based on ns of typical use. Number of years the deployed t will operate. EXAMPLE Descriptor

Annual Production Capacity

Manufacturing Contribution

Total Installed System Price

Capacity per unit per year

Share of Facility Output

Deployed Property Lifetime

Alcohol to jet from isobutanol - fermentation -	The electrolyzers will run on renewable electricity, so the applicant selects the LCA for "renewable electrolysis." This is
corn grain/starch	equivalent to a 100% reduction in emissions per GGE.

Data	Units	Notes/Instructions
	50 Unit/year	Applicant produces 1000 1-MW electrolyzers at its new facility.
	50,000 \$/Unit	Electrolyzers are sold for \$100,000 each, but use \$50,000 worth of platinum group metals and other inputs, so the value added by the manufacturer is \$50,000.
	1,000,000 \$/Unit	The full hydrogen electrolysis system is estimated at \$1 million for a 1-MW capacity electrolyzer.
	150,000 GGE	A 1-MW electrolyzer could be expected to produce about 150,000 kg of hydrogen per year under typical operating conditions.
	100 %	100% of the facility will be used to produce clean hydrogen.
	10 years	Electrolyzers are expected to last about 10 years before replacement.

Instructions for Manufacturers of Energy Storage Systems

User Input Calculated or from other tab Instructions are in yellow boxes next Manufacturing facilities for (non-vehicle*) energy storage systems should complete each green cell on tl metrics include rating factors that describe the performance of the product in its ultimate use. Applicant and/or the Assumptions tab for assistance.

*Manufacturers of batteries for electric vehicles should complete the vehicles tab.

Annual Attributable Production Capacity (AAPC)				
Descriptor	Data	Units	Notes/Instructions	
Annual Production Capacity		MW/year	Expected annual produ production capacity in output of the batteries watt ratings, make an a the end product per ur assumptions below.	
Conversion Factor and Explanation			For non-watt rated tec factor (e.g., square me	
Manufacturing Contribution		\$/kWh	Value added contribut feedstock materials, ur	
Total System Hardware Price		\$/kWh	Price to end user of to system but excluding in	
Typical Annual Capacity Factor		%	See Assumptions tab for assumptions of typical output)/(peak power r capacity factor, please value between 0 and 1	
Share of facility output		%	Fraction of production that will be allocated for value between 0 and 1	
Deployed Property Lifetime		years	See Assumptions tab for assumptions of typical equipment will operate	

to the corresponding inputs his tab to indicate annual production. These ts may reference the example to the right

Iction. Facilities that typically express their Megawatt-Hours should instead state power in Megawatts. For components without assumption about the amount of watts of nit of your component, and state your

hnologies ONLY, explain your conversion ters to megawatt-hours) in 50 words or less.

ion to system (excludes price paid for ostream components, etc.).

tal system hardware including balance of nstallation labor costs.

or common capacity factors, based on use. Defined as (annual energy ating * 8760 hours). If you use a different justify in the narrative. Entries must be a

from project (i.e., manufacturing facility) or eligible equipment. Entries must be a

or common capacity factors, based on use. Number of years the deployed e.

EXAMPLE

Descriptor

Annual Production Capacity

Conversion Factor and Explanation

Manufacturing Contribution

Total System Hardware Price

Typical Annual Capacity Factor

Share of facility output

Deployed Property Lifetime

Data	Units	Notes/Instructions
	100 MW/year	Lithium-ion battery factory assembles 200 MWh of 2-hour duration batteries for stationary storage applications. Those batteries represent 100 MW of power.
N/A		N/A
	\$50 \$/kWh	Manufacturer adds \$50/kWh of value in assembling the battery cell and pack.
	\$400 \$/kWh	Total price of the installed system is \$400/kWh.
	10% %	Capacity factor of stationary storage, according to the Assumptions tab.
	100% %	100% of the factory is being used for battery production.
	10 years	Assumed battery system lifetime is 10 years

Instructions for Manufacturers of Eligible Electric, Fuel Cell, and Hybrid Vehicles and Components (

User Input Calculated or from other tab Instructions are in yellow boxe Manufacturing facilities for eligible vehicles and their components should complete each green cell on this tak include rating factors that describe the performance of the product in its ultimate use. Applicants may referer tab for assistance.

Annual Attributable Production Capacity (AAPC)				
Descriptor	Data	Units	Notes/Inst	
Identify End Vehicle Type			Select the	
Annual Production Capacity		Unit/year	Projected (manufactu	
Manufacturing Contribution		\$/Unit	Value adde feedstock	
Total Price of Vehicle Equipment		\$/Unit	Price to en system but	
Share of facility output		%	Fraction of that will be Entries mu	
Deployed Property Lifetime		years	See Assum assumption equipment	
Annual Improved System Fuel Consumption		Miles per gallon of gasoline equivalent (MPGGE)	Projected I typical ope duty vehicl below. If p	
Miles per kWh		Miles per kWh	If electric c typical ope	

excl. charging equipment)

es next to the corresponding inputs to indicate annual production. These metrics nee the example to the right and/or the Assumptions

ructions

eligible property type being produced at the facility

(not peak or potential) number of units red annually.

ed contribution to system (excludes price paid for materials, upstream components, etc.).

d user of total system hardware including balance of texcluding installation labor costs.

production from project (i.e., manufacturing facility) allocated to produce vehicle technology. st be a value between 0 and 1.

ptions tab for common capacity factors, based on ns of typical use. Number of years the deployed t will operate.

iquid fuel consumption of improved system under ration (e.g., average fuel economy of a hybrid heavyle). If fully electric, enter "0" and fill out the row lugin hybrid, fill out both rows.

or plug-in hybrid, state the required electricity under pration (e.g., average MPGe of an electric vehicle).

EXAMPLE

Descriptor

Identify End Vehicle Type

Annual Production Capacity

Manufacturing Contribution

Total Price of Vehicle Equipment

Share of facility output

Deployed Property Lifetime

Annual Improved System Fuel Consumption

Miles per kWh

Data	Units	Notes/Instructions
electric vehicle		Batteries are sold for EVs
	100,000 Unit/year	Applicant produces 100,000 EV batteries per year at its 10 GWh factory.
	\$6,000 \$/Unit	Finished battery is sold for \$12,000, but inputs and subcomponents cost \$6,000, so the "manufacturing contribution" of this facility is \$6,000.
	\$25,000 \$/Unit	Total price of electric vehicle is \$25,000.
	90% %	90% of the facility's output goes to EVs, 10% to consumer electronics.
	16 years	Assumed EV lifetime is 16 years.
	0 Miles per gallon of gasoline equivalent (MPGGE)	Presumes the improved system uses no liquid fuel.
	3 Miles per kWh	The improved system uses electricity and gets roughly 3 miles per kWh.

Instructions for Manufacturers of Eligible Grid Modernization Equipment and Electric Vehicle Charg

User Input Calculated or from other tab Instructions are in yellow boxe Manufacturing facilities for eligible grid modernization equipment should complete each green cell on this tab rating factors that describe the performance of the product in its ultimate use. Applicants may reference the e assistance.

Annual Attributable Production Capacity	(AAPC)		
Descriptor	Data	Units	Notes/Inst
Identify property type			Select the e
Annual Production Capacity		Units, kVA, etc. per year	Projected (I manufactui terms of pc raw numbe
Manufacturing Contribution		\$/Unit	Value adde (excludes p component
Total Price of Equipment		\$/Unit	Price to end system but
Typical Annual Capacity Factor		%	See Assumption assumption output)/(pe capacity fac value betw
Share of facility output		%	Fraction of that will be be a value l
Deployed Property Lifetime		years	See Assumption assumption equipment

ing Equipment

s next to the corresponding inputs to indicate annual production. These metrics include xample to the right and/or the Assumptions tab for

ructions

ligible property type being produced at the facility

not peak or potential) number or capacity of units red annually. If possible, express the total capacity in ower capacity (e.g., kVA for transformers) rather than or of units produced.

d contribution to system for each unit produced rice paid for feedstock materials, upstream ts, etc.).

d user of total system hardware including balance of excluding installation labor costs.

ptions tab for common capacity factors, based on is of typical use. Defined as (annual energy eak power rating * 8760 hours). If you use a different ctor, please justify in the narrative. Entries must be a een 0 and 1.

production from project (i.e., manufacturing facility) allocated to produce eligible equipment. Entries must between 0 and 1.

otions tab for common capacity factors, based on is of typical use. Number of years the deployed will operate.

EXAMPLE

Descriptor

Identify property type Annual Production Capacity

Manufacturing Contribution

Total Price of Equipment

Typical Annual Capacity Factor

Share of facility output

Deployed Property Lifetime

Data	Units	Notes/Instructions
Electric grid modernization e	equipment or com	Large Power Transformers are grid modernization equipment
2,000	MVA/year	Projected (not peak or potential) number or capacity of units manufactured annually. If possible, express the total capacity in electrical terms (e.g., kVA for transformers) rather than raw number of units.
1,000,000	\$/Unit	The manufacturer purchases \$500,000 of raw materials for each LPT, but sells each one for \$1.5 million, so generates \$1 million of value in the process.
1,500,000	\$/Unit	The total value of the completed LPT is \$1.5 million
65%	%	Average U.S. capacity factor of transmission equipment is 65%, per the <i>Assumptions</i> tab.
100%	%	We assume all of the facility output is for LPTs.
20	years	Assumed LPT lifetime is 25 years.

Instructions for Manufacturers of Eligible Refining, Blending, or Electrolyzing Equipment

User Input Calculated or from other tab Instructions are in yellow boxed Manufacturing facilities for eligible refining, blending, or electrolyzing equipment for eligible fuels, products, a this tab to indicate annual production. These metrics include a "Fuel Type/Process" selection, as well as other product in its ultimate use. Applicants may reference the example to the right and/or the Assumptions tab for

Fuel Type/Process	Alcohol to jet from ethanol - gasification - wood waste	lf other, enter here	Select the electrolyzi

Annual Attributable Production Capacity (AAPC)				
Descriptor	Data	Units	Notes/Inst	
Annual Production Capacity		Unit/year	Projected (manufactu	
Manufacturing Contribution		\$/Unit	Value adde feedstock i	
Total Installed System Price		\$/Unit	Price to en system but	
Capacity per unit per year		GGE	Amount of refining, el expressed MW, or otl MJs.	
Deployed Property Lifetime		years	See Assum assumption equipment	
Share of Facility Output		%	Percentage allocated t between 0	

es next to the corresponding inputs and chemicals should complete each green cell on metrics to understand the performance of the r assistance.

most representative fuel refining, blending, or ng process in cell B5. If other, enter in C5.

Fuel Type/Process

ructions

(not peak or potential) number of units red annually.

ed contribution to system (excludes price paid for materials, upstream components, etc.).

d user of total system hardware including balance of t excluding installation labor costs.

fuel, chemical, or product enabled the given unit of ectrolyzing, or blending equipment annually, best in gallons of gasoline equivalent (GGE). Kilograms, her units should be converted to GGE using BTUs or

ptions tab for common capacity factors, based on ns of typical use. Number of years the deployed t will operate.

e of a project (i.e., manufacturing facility) that will be o eligible equipment. Entries must be a value and 1.

EXAMPLE

Descriptor Annual Production Capacity

Manufacturing Contribution

Total Installed System Price

Capacity per unit per year

Deployed Property Lifetime

Share of Facility Output

Gaseous hydrogen -	The electrolyzers will run on renewable electricity, so the
renewable electrolysis	equivalent to a 100% reduction in emissions per GGE.

Data	Units	Notes/Instructions
	50 Unit/year	Applicant produces 1000 1-MW electrolyzers at its new facility.
	50,000 \$/Unit	Electrolyzers are sold for \$100,000 each, but use \$50,000 worth of platinum group metals and other inputs, so the value added by the manufacturer is \$50,000.
	1,000,000 \$/Unit	The full hydrogen electrolysis system is estimated at \$1 million for a 1-MW capacity electrolyzer.
	150,000 GGE	A 1-MW electrolyzer could be expected to produce about 150,000 kg of hydrogen per year under typical operating conditions.
	10 years	Electrolyzers are expected to last about 10 years before replacement.
	100 %	100% of the facility will be used to produce clean hydrogen.

Instructions for Manufacturers of Eligible Energy Conservation Equipment

User Input Calculated or from other tab Instructions are in yellow boxe Manufacturing facilities for eligible energy conservation equipment should complete each green cell on this ta "Fuel Type/Process" selection for the incumbent and improved technologies, as well as other metrics to unde Applicants may reference the example to the right and/or the Assumptions tab for assistance.

Fuel Information		
Baseline Fuel Type/Process	If selected 'Other', explain here	Select the electrolyziı
Improved Fuel Type/Process	If selected 'Other', explain here	Select the blending, c projects, so switching r text.

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Identify Property Type			Identify if p
Annual Production Capacity		Unit/year	Projected (annually.
Manufacturing Contribution		\$/Unit	Value adde feedstock i
Total Price of Efficiency Equipment		\$/Unit	Price to en system but
Annual Baseline System Consumption		MMBTU/year	Likely annu switching c energy cor Baseline sy commercia
Annual Improved System Consumption		MMBTU/year	Likely annu switching (energy cor
Deployed Property Lifetime		years	See Assum assumption equipment
Share of Facility Output		%	Fraction of will be allo must be a

es next to the corresponding inputs

ab to indicate annual production. These metrics include a rstand the performance of the product in its ultimate use.

most representative baseline fuel refining, blending, or ng process.

most representative improved/ new fuel refining, or electrolyzing process. For efficiency improvement elect the same fuel type/ process as the baseline if fuel not applicable and explain efficiency improvement in the

ructions

property is serving residential market; industrial or al market; or both

not peak or potential) number of units manufactured

ed contribution to system (excludes price paid for materials, upstream components, etc.).

d user of total system hardware including balance of texcluding installation labor costs.

al energy consumption of baseline system (WITHOUT fuel or efficiency technology) under typical operation (e.g., nsumption of average home using natural gas heating). (stem assumptions must match the assumptions used in al viability section of concept paper application

al energy consumption of improved system (AFTER fuel or efficiency technology) under typical operation (e.g., sumption of average home with air source heat pump).

ptions tab for common capacity factors, based on ns of typical use. Number of years the deployed t will operate.

production from project (i.e., manufacturing facility) that cated to produce energy efficiency technology. Entries value between 0 and 1.

EXAMPLE		
Baseline Fuel Type/Process	Natural Gas	The project manufact replace natural gas fu
Improved Fuel Type/Process	Grid electricity	Heat pumps are assu

EXAMPLE			
Descriptor	Data	Units	Notes/Instructions
Identify Property Type		Residential	Heat Pumps are for re
Annual Production Capacity		10,000 Unit/year	Manufacturer produc heat pumps
Manufacturing Contribution		\$3,500 \$/Unit	Heat Pumps are sold materials and compo- is \$3500 per unit.
Total Price of Efficiency Equipment		\$5,000 \$/Unit	Price to end user of to balance of system bu
Annual Baseline System Consumption		80 MMBTU/year	Annual energy consu natural gas furnance
Annual Improved System Consumption		16 MMBTU/year	Cold climate heat pur 64 MMBTU
Deployed Property Lifetime		10 years	Heat pumps average
Share of Facility Output		100% %	All of the factory's ou

ures heat pumps which are assumed to rnaces.

med to be powered by grid electricity.

esidential scale

es 10,000 units of cold-climate air-source

for \$5000 but incorporate \$1500 of input nents, so the manufacturer's contribution

otal HVAC system hardware including t excluding installation labor costs.

mption of the average building using of comparable size to heat pump

np is projected to reduce energy usage by

lifetime are 10 years

tput goes to producing heat pump

Instructions for Manufacturers of Carbon Capture, Removal, Use, and Storage

User Input Calculated or from other tab Instructions are in yellow boxe Manufacturing facilities for eligible carbon capture, remove, use, or storage equipment -- or other equipment green cell on this tab to indicate annual production. These include metrics to understand the performance of t reference the example to the right and/or the Assumptions tab for assistance.

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Annual Production Capacity		Unit/year	Projected (i annually.
Manufacturing Contribution		\$/Unit	Value adde feedstock r
Total Cost of Emissions Reduction Component		\$/Unit	Price to end including ba
CO2e Reduction Per Unit		Metric tons CO2e	Annual CO2 equipment "CO2 Equiv
Deployed Property Lifetime		years	See Assumption
Share of Facility Output		%	Percentage allocated to and 1.

s next to the corresponding inputs designed to reduce emissions -- should complete each the product in its ultimate use. Applicants may

ructions

not peak or potential) number of units manufactured

d contribution to system (excludes price paid for naterials, upstream components, etc.).

d user of total system hardware (e.g., full CCS system) alance of system but excluding installation labor costs.

2-equivalent emissions reductions per unit deployed. For that reduces non-CO2 emissions, applicants can use the alency Assumptions" on the Assumptions tab.

otions tab for common capacity factors, based on is of typical use. Number of years the deployed will operate.

of a project (i.e., manufacturing facility) that will be b eligible equipment. Entries must be a value between 0

Annual Attributable Production Capacity

Descriptor Annual Production Capacity

Manufacturing Contribution

Total Cost of Emissions Reduction Component

CO2e Reduction Per Unit

Deployed Property Lifetime

Share of Facility Output

(AAPC)		
Data	Units	Notes/Instructions
	100,000 Unit/year	A manufacturer projects that its new factory will produce 100,000 gallons of a solvent that can be used in carbon capture systems.
	450 \$/Unit	Value added contribution to system (excludes price paid for feedstock materials, upstream components, etc.).
	5,000 \$/Unit	The full price of the functional CCS apparatus is estimated at \$5,000 per gallon of solvent.
	100 Metric tons CO2e	Each gallon of solvent is expected to reduce 1,000 metric tons of CO2e per year.
	20 years	The solvent is expecteed to last 20 years before replacement
	50% %	Half of the facility's solvent will be sold into the cleaning products market, so only 50% of the facility's output is dedicated to eligible technologies.

Instructions for Recyclers of Qualified Energy Properties

User Input	Calculated or from other tab	Instructions are in	yellow boxe
Recycling facilities of qualified energy pro properties (input) and the products (output tab for assistance.	perties should complete each green ut) and associated production inform	cell on this tab to in nation. Applicants m	dicate annu ay reference
Fuel Information		K as last ad	Calastatis
Input Technology Area		If selected 'Other', explain here	recycling ir material da
Output Technology Area		If selected 'Other', explain here	Select the recycling o critical mat

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Recovery Rate		Mass/Unit	Projected (
Annual Production Capacity		Unit/year	Projected (produced. MWh, toni

es next to the corresponding inputs al production. These metrics include the recycled e the example to the right and/or the Assumptions

most representative technology area for the nput. If the input is a critical material, use the critical ata sheet and application

most representative technology area for the utput. If the output is a critical material, fill out the terial data sheet

(not peak or potential) recovered rate

ructions

EXAMPLE

Input Technology Area

Output Technology Area

EXAMPLE

Descriptor Recovery Rate

(not peak or potential) number of output units Fill in the Unit column with the appropriate unit e.g. nes, etc **Annual Production Capacity**

Electric or fuel cell vehicles - 48C(c)(1)(A)(i)(VII)	If selected 'Other', explain here	Select the most representative technology area for the recycling input. If the input is a critical material, use the critical material data sheet and application
Electric or fuel cell vehicles - 48C(c)(1)(A)(i)(VII)	If selected 'Other', explain here	Select the most representative technology area for the recycling input. If the output is a critical material, select other and write in the critical material

Data	Units	Notes/Instructions
0.	5 g Li/battery cell	Projected (not peak or potential) recovered rate
100,00	0 kg Li/year	Manufacturer produces 100,000 kg of of Lithium from recycled batteries inputs

Instructions for Manufacturers of Other Greenhouse Gas Reduction Equipment

User Input Calculated or from other tab Instructions are in yellow boxe Manufacturing facilities for other equipment designed to reduce greenhouse gas emissions should complete e include metrics to understand the performance of the product in its ultimate use. Applicants may reference the

Provide Brief Description of Output		In 10 words
		qualifies fo

Annual Attributable Production Capacity (AAPC)			
Descriptor	Data	Units	Notes/Inst
Base Unit		Unit	Describe th
Annual Production Capacity		Unit/year	Projected (
Manufacturing Contribution		\$/Unit	Value adde upstream c
Total Cost of Emissions Reduction Component		\$/Unit	Price to end balance of
CO2e Reduction Per Unit		Metric tons CO2e/unit	Annual CO2 that reduce Assumption
Deployed Property Lifetime		years	See Assum typical use.
Share of Facility Output		%	Percentage eligible equ

s next to the corresponding inputs

ach green cell on this tab to indicate annual production. These ie example to the right and/or the Assumptions tab for assistance.

s or less, describe what product the facility produces and why it r the 48C tax credit

ructions

e unit of production

not peak or potential) number of units manufactured annually.

d contribution to system (excludes price paid for feedstock materials, omponents, etc.).

d user of total system hardware (e.g., full CCS system) including system but excluding installation labor costs.

2-equivalent emissions reductions per unit deployed. For equipment is non-CO2 emissions, applicants can use the "CO2 Equivalency ns" on the Assumptions tab.

otions tab for common capacity factors, based on assumptions of Number of years the deployed equipment will operate.

of a project (i.e., manufacturing facility) that will be allocated to ipment. Entries must be a value between 0 and 1.

Baseline Metrics and Conversion Factors			
Metric	Value		
MJ per gallon of gasoline	120		
BTUs per gallon of gasoline	114,000		
Annual Miles Traveled (average new light-duty vehicle)	10,850		
Baseline Vehicle Fuel Economy	24		
Vehicle Cost (2021 average new light-duty vehicle)	42,000		

CO2 Equivalency Assumptions	
Original Metric	CO2e Emissions (metric tons)
Metric ton of CO2	1
Metric ton of Methane	22.7
Metric ton of Nitrous Oxide	270
Metric ton of HFCs/PFCs	Various (use EPA calculator be
Metric ton of SF6	20,684
Gallon of gasoline avoided	0.009
Megawatt-hour of electricity avoided	0.709
Source: https://www.opa.gov/opergy/groophouse/	an oquivalencies calculator

Source: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Common Service Life Assumptions		
Technology	Service Life Years	
General suggestion (for technologies excluded below)	20	
Distributed Solar Photovoltaics - Modules	26	
Distributed Solar Photovoltaics - Inverters	21	
Distributed Wind	20	
Battery Storage - Cells	10	
Battery Storage - String Inverters	15	
Fuel Cell	10	
Micro Turbine	10	
Air-Source Heat Pump	9 to 22	
Electric Rooftop Heat Pump	21	
Ground-Source Heat Pump	8 to 21	
Grid Modernization Equipment	25	
Light-duty Vehicle	16	
Utility-scale PV	30	
Utility-scale Wind	30	
Utility-scale Fuel Cells	30	
Utility-scale Combustion Turbines	30	

Common Capacity Factor Assumptions		
End Use Energy Product (Technology)	Capacity Factor (%)	
Biomass (general)	52%	
Geothermal	73%	
Grid - Transmission/Transportation	65%	
Grid Equipment - Interconnection	80%	
Landfill gas utilization (general)	80%	
Solar Thermal	28%	
Solar Photovoltaic (general)	20%	

Storage	10%
Storage – Pumped Hydro	N/A
Storage – Adv. Batteries	10%
Storage – Flywheel	N/A
Wind	44%
Wind – Offshore	42%

CO2 Equivalency Assumptions		
Original Metric	CO2e Emissions (metric tons)	
Metric ton of CO2	1	
Metric ton of Methane	22.7	
Metric ton of Nitrous Oxide	270	
Metric ton of HFCs/PFCs	Various (use EPA calculator be	
Metric ton of SF6	20,684	
Gallon of gasoline avoided	0.009	
Megawatt-hour of electricity avoided	0.709	
Source: https://www.epa.gov/epergy/greenhouse-c	as-equivalencies-calculator	

Source: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

Jnits	
AJ/GGE	
BTU/GGE	
niles	
npg	

low)

Notes

https://www.eia.gov/analysis/studies/building s/dg_storage_chp/ https://www.eia.gov/analysis/studies/building s/equipcosts/ https://www.eia.gov/analysis/studies/building s/equipcosts/ https://www.eia.gov/analysis/studies/building s/equipcosts/

However, these technologies will remain inservice as long as going-forward revenues (system value) exceed going-forward costs (variable and fixed operating costs). Thus actual service life may be shorter-than or substantially longer than 30-years.

Notes

Fleet capacity factor in 2021

Fleet capacity factor in 2021

Fleet capacity factor in 2021

Based on NEMS EMM Region 20 WECC Southwest

Based on ac kWh delivered and dc watts rated power (Use 25% if ac-to-ac)

Based on NEMS EMM Region 18 and 19: South	west Power Pool Central and North
	1

Based on NEMS EMM Region 7 NPCC New England

low)