Table 1. Summary of Burden and Cost by Source Category and Year | | Year 1 (2025) | | | | | | | | | | | |--|---------------------|-----------------------------|---------------------------------|----------------------------|-----|-----------------------|--------------------------|----------------------|------------------|--------------------|--| | Source Category | No. Respondents (1) | Burden - Technical
(hrs) | Burden -
Managerial
(hrs) | Burden -
Clerical (hrs) | | Total Burden
(hrs) | Total Labor Cost
(\$) | Capital Cost
(\$) | O&M Cost
(\$) | Total Cost
(\$) | | | C. Stationary Combustion
(general unspecified) | 310 | -4 | -1 | -3 | 0 | -8 | -\$2,425 | \$0 | \$ 0 | -\$2,425 | | | | | | | | | | | | | | | | G. Ammonia Manufacturing H. Cement Production | 29
94 | 1.5 | 0.07 | 0.15 | 0 | 1.7 | \$119 | \$0
\$0 | \$0
\$0 | \$119
\$1,999 | | | H. Cement Production | 94 | 24 | 1 | 2 | 0 | 21 | \$1,999 | \$0 | \$0 | \$1,999 | | | I. Electronics Manufacturing | 48 | 235 | 19 | 13 | 1 | 268 | \$19,651 | \$0 | \$62 | \$19,714 | | | N. Glass Production | 101 | 35 | 2 | 4 | 0 | 41 | \$2,074 | \$0 | \$0 | \$2,074 | | | P. Hydrogen Production | 114 | 106 | 8 | 11 | 0 | 124 | \$7,497 | \$ 0 | \$2,561 | \$10,058 | | | Q. Iron and Steel | 121 | 18 | 0.9 | 1.8 | 0 | 21 | \$1,485 | \$0 | \$0 | \$1,485 | | | S. Lime Manufacturing | 71 | 36 | 1.8 | 3.6 | 0 | 41 | ÷1.404 | \$0 | \$ 0 | #1.494 | | | 5. Lime Manufacturing | 71 | 30 | 1.0 | 3.0 | 0 | 41 | \$1,186 | \$0 | \$0 | \$1,186 | | | V. Nitric Acid Production | 1 | -78 | -3.8 | -12 | -1 | -95 | -\$2,680 | \$0 | -\$11,085 | -\$13,765 | | | W. Petroleum and Natural Gas | | | | | | | | | | | | | Systems | 188 | 18473 | 2249 | 925 | 376 | 22045 | \$2,433,058 | \$0 | \$2,717,864 | \$5,150,921 | | | X. Petrochemical Production | 31 | 12 | 1 | 1 | 0 | 14 | \$618 | \$0 | \$0 | \$618 | | | Y. Petroleum Refineries | 57 | -55 | -8.9 | -6 | -6 | -76 | -\$6,133 | \$0 | -\$3,930 | -\$10,063 | | | AA. Pulp & Paper Mnfctrng | 1 | 1.4 | 0.01 | 0 | 0 | 1.4 | \$104 | \$0 | \$0 | \$104 | | | BB. Silicon Carbide Production | 1 | 0.25 | 0.01 | 0.03 | 0 | 0.29 | \$20 | \$0 | \$0 | \$20 | | | DD. Sulfur Hexafluoride (SF6)
from Electric Power Systems | 95 | 188 | 15 | 24 | 2 | 228 | \$15,278 | \$O | \$3,119 | \$18,397 | | | non Electric Force Systems | | 100 | 10 | | | | \$15,27 0 | ų, | 40,117 | Ψ10,077 | | | FF. Underground Coal Mines | 61 | 0 | 0 | 0 | 0 | 0 | \$0 | \$0 | \$0 | \$0 | | | GG. Zinc Production | 5 | 0.50 | 0.03 | 0.05 | 0 | 1 | \$20 | \$0 | \$0 | \$20 | | | HH. MSW Landfills | 1,129 | 1,348 | 72 | 121 | 12 | 1553 | \$84,651 | \$0 | \$374 | \$85,025 | | | II. Industrial Wastewater
Treatment | 2 | 54 | 8 | 4 | 4 | 70 | \$5,288 | \$0 | \$3,077 | \$8,364 | | | OO. Suppliers of Industrial GHG | 121 | 74 | 11 | 6 | 2 | 93 | \$6,884 | \$0 | \$62 | \$6,946 | | | PP. Suppliers of Carbon Dioxide | 22 | 10.7 | 0.5 | 1.1 | 0 | 12 | \$872 | \$0 | \$0 | \$872 | | | QQ. Importers/Exporters of
FGHGs in Pre-Charged Equp. Or
Foams | 33 | 3.3 | 0.17 | 0.33 | 0 | 3.8 | \$249 | \$0 | \$ 0 | \$249 | | | RR. Geologic Sequestration of
Carbon Dioxide | 9 | 0 | 0.17 | 0.33 | 0 | 0 | \$249
\$0 | \$0 | \$0 | \$249
\$0 | | | | | | | | | | | | | | | | SS. Electrical Equip.
Manufacture & Refurbishment | 5 | 4.5 | 0.23 | 0.45 | 0 | 5.2 | \$358 | \$0 | \$0 | \$358 | | | TT. Industrial Waste Landfills | 1 | 45 | 10 | 8 | 3 | 66 | \$4,853 | \$0 | \$62 | \$4,915 | |--|-------|--------|-------|-------|-----|--------|-------------|-----|-------------|-------------| | UU. Injection of Carbon Dioxide | 2 | -18 | -5 | -3 | 0 | -26 | -\$1,886 | \$0 | -\$125 | -\$2,011 | | VV. Geologic Sequestration of
CO2 with EOR | 2 | 17 | 5 | 5 | 0 | 27 | \$1,882 | \$0 | \$125 | \$2,007 | | WW. Coke Calciners | 15 | 390 | 48 | 36 | 30 | 504 | \$37,847 | \$0 | \$19,649 | \$57,497 | | XX. Calcium Carbide | 1 | 31 | 2.8 | 2.2 | 2.0 | 38 | \$2,849 | \$0 | \$62 | \$2,911 | | YY. Caprolactum, Glyoxal, and
Glyoxalic Acid Production | 6 | 130 | 17 | 13 | 6 | 166 | \$12,285 | \$0 | \$374 | \$12,660 | | ZZ. Ceramics Production | 25 | 600 | 55 | 48 | 50 | 753 | \$56,678 | \$0 | \$1,559 | \$58,238 | | TOTAL | 2,701 | 21,683 | 2,507 | 1,207 | 481 | 25,900 | \$2,684,681 | \$0 | \$2,733,813 | \$5,418,494 | ⁽¹⁾ Some respondents belong to multiple source categories, so the number of respondents is not additive. Table 2. Summary of Burden and Cost by Source Category and Year | | Year 2 (2026) | | | | | | | | | | | | | |--|---------------------------|--------------------------------|---------------------------------|----------------------------|-------------------------|-------|--------------------------|----------------------|------------------|--------------------|--|---------------------------|--------------------------------| | Source
Category | No.
Respondents
(1) | Burden -
Technical
(hrs) | Burden -
Managerial
(hrs) | Burden -
Clerical (hrs) | Burden -
Legal (hrs) | | Total Labor Cost
(\$) | Capital Cost
(\$) | O&M Cost
(\$) | Total Cost
(\$) | Source
Category | No.
Respondents
(1) | Burden -
Technical
(hrs) | | C. Stationary
Combustion
(general
unspecified) | 310 | -4 | -1 | -3 | 0 | -8 | -\$2,425 | \$0 | \$0 | -\$2,425 | C. Stationary
Combustion
(general
unspecified) | 310 | -4 | | G. Ammonia
Manufacturin | | | | | | | | | | | G. Ammonia
Manufacturin | | | | g
H. Cement
Production | 29
94 | 24 | 1 | 2 | 0 | 2 27 | \$119
\$1,999 | \$0
\$0 | \$0
\$0 | \$119
\$1,999 | H. Cement
Production | 29
94 | 24 | | I. Electronics | | | | | | | . , | | , | | | | | | Manufacturin
g | 48 | 212 | 18 | 11 | 1 | 242 | \$17,794 | \$0 | \$62 | \$17,856 | I. Electronics
Manufacturin
g | 48 | 218 | | N. Glass
Production | 101 | 35 | 2 | 4 | 0 | 41 | \$2,074 | \$0 | \$0 | \$2,074 | N. Glass
Production | 101 | 35 | | P. Hydrogen
Production | 114 | 106 | 8 | 11 | 0 | 124 | \$7,497 | \$0 | \$2,561 | \$10,058 | P. Hydrogen
Production | 114 | 106 | | Q. Iron and
Steel | 121 | 18 | 0.9 | 2 | 0 | 21 | \$1,485 | \$0 | \$0 | \$1,485 | Q. Iron and
Steel | 121 | 18 | | S. Lime
Manufacturin
g | 71 | 36 | 1.8 | 3.6 | 0 | 41 | \$1,186 | \$0 | \$0 | \$1,186 | S. Lime
Manufacturin
g | 71 | 36 | | V. Nitric Acid
Production | 1 | -78 | -3.8 | -12.0 | -1.0 | -95 | -\$2,680 | \$0 | -\$11,085 | -\$13,765 | V. Nitric Acid
Production | 1 | -78 | | W. Petroleum
and Natural
Gas Systems
X. | 188 | 18473 | 2249 | 925 | 376 | 22045 | \$2,433,058 | \$0 | \$2,717,864 | \$5,150,921 | W. Petroleum
and Natural
Gas Systems | 188 | 18473 | | Petrochemica
I Production | 31 | 12 | 0.6 | 1.2 | 0.0 | 14 | \$618 | \$0 | \$0 | \$618 | Petrochemica
I Production | 31 | 12 | | Y. Petroleum
Refineries | 57 | -55 | -8.9 | -6 | -6 | -76 | -\$6,133 | \$0 | -\$3,930 | -\$10,063 | Y. Petroleum
Refineries | 57 | -55 | | Paper
Mnfctrng | 1 | 1.4 | 0.01 | 0.01 | 0 | 1.4 | \$104 | \$0 | \$0 | \$104 | Paper
Mnfctrng | 1 | 1.4 | | Carbide
Production | 1 | 0.25 | 0.01 | 0.03 | 0.00 | 0.3 | \$20 | \$0 | \$0 | \$20 | Carbide
Production | 1 | 0.3 | | DD. Sulfur
Hexafluoride
(SF6) from
Electric
Power
Systems | 95 | 188 | 15 | 24 | 2 | 228 | \$15,278 | \$0 | \$3,119 | \$18,397 | DD. Sulfur
Hexafluoride
(SF6) from
Electric
Power
Systems | 95 | 188 | | FF.
Underground
Coal Mines | 61 | 0 | 0 | 0 | 0 | 0 | \$0 | \$0 | \$0 | \$0 | FF.
Underground
Coal Mines | 61 | 0 | | GG. Zinc
Production | 5 | 0.50 | 0.03 | 0.05 | 0 | 1 | \$20 | \$0 | \$0 | \$20 | GG. Zinc
Production | 5 | 0.50 | | HH. MSW
Landfills | 1,129 | 1138 | 66 | 109 | 6 | 1319 | \$81,793 | \$0 | \$374 | \$82,167 | HH. MSW
Landfills | 1,129 | 1138 | | II. Industrial
Wastewater
Treatment | 2 | 50 | 7 | 3 | 2 | 63 | \$4,713 | \$0 | \$3,077 | \$7,789 | II. Industrial
Wastewater
Treatment | 2 | 50 | | OO. Suppliers
of Industrial
GHG | 121 | 74 | 11 | 6 | 2 | 93 | \$6,884 | \$0 | \$62 | \$6,946 | OO. Suppliers
of Industrial
GHG | 121 | 74 | | PP. Suppliers
of Carbon
Dioxide | 22 | 10.7 | 0.5 | 1.1 | 0 | 12 | \$872 | \$0 | \$0 | \$872 | PP. Suppliers
of Carbon
Dioxide | 22 | 11 | | FGHGs in Pre-
Charged
Equp. Or
Foams
Sequestration | 33 | 3.3 | 0.17 | 0.33 | 0 | 3.8 | \$249 | \$0 | \$0 | \$249 | FGHGs in Pre-
Charged
Equp. Or
Foams
Sequestration | 33 | 3 | | of Carbon
Dioxide | 9 | 0 | 0 | 0 | 0 | 0 | \$0 | \$0 | \$0 | \$0 | of Carbon
Dioxide | 9 | 0 | | SS. Electrical
Equip.
Manufacture
&
Refurbishmen | | | | | | | | | | | SS. Electrical
Equip.
Manufacture
&
Refurbishmen | | | | t | 5 | 4.5 | 0.2 | 0.5 | 0 | 5 | \$358 | \$0 | \$0 | \$358 | t | 5 | 5 | | TT. Industrial
Waste
Landfills | 1 | 42 | 6 | 5 | 1 | 54 | \$3,934 | \$0 | \$62 | \$3,996 | TT. Industrial
Waste
Landfills | 1 | 42 | |---|-------|--------|-------|-------|-----|--------|-------------|-----|-------------|-------------|---|-------|----------| | UU. Injection
of Carbon
Dioxide | 2 | -18 | -5 | -3 | 0 | -26 | -\$1,886 | \$0 | -\$125 | -\$2,011 | UU. Injection
of Carbon
Dioxide | 2 | -18 | | Sequestration
of CO2 with
EOR | 4 | 18 | 6 | 6 | 0 | 30 | \$2,923 | \$0 | \$250 | \$3,172 | Sequestration
of CO2 with
EOR | 6 | 27 | | WW. Coke
Calciners | 15 | 345 | 48 | 36 | 30 | 459 | \$34,525 | \$0 | \$19,649 | \$54,175 | WW. Coke
Calciners | 15 | 345 | | XX. Calcium
Carbide | 1 | 28 | 2.8 | 2.2 | 2.0 | 35 | \$2,627 | \$0 | \$62 | \$2,690 | XX. Calcium
Carbide | 1 | 28 | | YY.
Caprolactum,
Glyoxal, and
Glyoxalic Acid
Production | 6 | 114 | 17 | 13 | 6 | 150 | \$11,089 | \$O | \$374 | \$11,464 | YY.
Caprolactum,
Glyoxal, and
Glyoxalic Acid
Production | 6 | 114 | | ZZ. Ceramics
Production | 25 | 550 | 55 | 48 | 50 | 703 | \$52,987 | \$0 | \$1,559 | \$54,546 | ZZ. Ceramics
Production | 25 | 550 | | TOTAL | 2,701 | 21,329 | 2,496 | 1,190 | 471 | 25,510 | \$2,671,081 | \$0 | \$2,733,937 | \$5,405,019 | TOTAL | 2,701 | \$21,344 | ⁽¹⁾ Some respondents belong to multiple source categories, so the number of respondents is not additive. (1) Some respondents belong to multiple sou Table 3. Summary of Burden and Cost by Source Category and Year Table 4. Summary of Burden and | | Year 3 (2027) | | | | | | Annual 3-Year A | | | | | | | |---------------------------------|----------------------------|-------------------------|-----------------------|-----------------------------|----------------------|------------------|--------------------|--|---------------------------|--------------------------------|---------------------------------|----------------------------|-------------------------| | Burden -
Managerial
(hrs) | Burden -
Clerical (hrs) | Burden -
Legal (hrs) | Total Burden
(hrs) | Total Labor
Cost
(\$) | Capital Cost
(\$) | O&M Cost
(\$) | Total Cost
(\$) | Source
Category | No.
Respondents
(1) | Burden -
Technical
(hrs) | Burden -
Managerial
(hrs) | Burden -
Clerical (hrs) | Burden -
Legal (hrs) | | -1 | -3 | 0 | -8 | -\$2,425 | \$0 | \$0 | -\$2,425 | C. Stationary
Combustion
(general
unspecified) | 310 | -4 | -1 | -3 | 0 | | 0 | 0 | 0 | 2 | \$119 | \$0 | \$0 | \$119 | G. Ammonia
Manufacturin | | 1 | 0 | 0 | 0 | | 1 | 2 | 0 | 27.0 | \$1,999 | \$0 | \$0
\$0 | \$1,999 | H. Cement
Production | 94 | 24 | 1 | 2 | 0 | | 1 | 2 | 0 | 27.0 | \$1,777 | \$0 | \$ 0 | \$1,777 | Production | 74 | 24 | 1 | 2 | | | 18 | 12 | 1 | 249 | \$18,252 | \$0 | \$62 | \$18,314 | I. Electronics
Manufacturin
g | 48 | 222 | 18 | 12 | 1 | | 2 | 4 | 0 | 41 | \$2,074 | \$O | \$0 | \$2,074 | N. Glass
Production | 101 | 35 | 2 | 4 | 0 | | 8 | 11 | 0 | 124 | \$7,497 | \$0 | \$2,561 | \$10,058 | P. Hydrogen
Production | 114 | 106 | 8 | 11 | 0 | | 1 | 2 | 0 | 21 | \$1,485 | \$0 | \$0 | \$1,485 | Q. Iron and
Steel | 121 | 18 | 1 | 2 | 0 | | 2 | 4 | 0 | 41 | \$1,186 | \$0 | \$0 | \$1,186 | S. Lime
Manufacturin | | 36 | 2 | 4 | 0 | | 2 | 4 | 0 | 41 | \$1,100 | \$0 | \$ 0 | \$1,100 | ğ | /1 | 30 | 2 | 4 | | | -4 | -12 | -1 | -95 | -\$2,680 | \$0 | -\$11,085 | -\$13,765 | V. Nitric Acid
Production | 1 | -78 | -4 | -12 | -1 | | 2249 | 925 | 376 | 22045 | \$2,433,058 | \$0 | \$2,717,864 | \$5,150,921 | W. Petroleum
and Natural
Gas Systems
X. | 188 | 18473 | 2249 | 925 | 376 | | 1 | 1 | 0 | 14 | \$618 | \$0 | \$0 | \$618 | Petrochemica
I Production | 31 | 12 | 1 | 1 | 0 | | -9 | -6 | -6 | -76 | -\$6,133 | \$O | -\$3,930 | -\$10,063 | Y. Petroleum
Refineries | 57 | -55 | -9 | -6 | -6 | | 0.01 | 0.01 | 0 | 1.4 | \$104 | \$0 | \$0 | \$104 | Paper
Mnfctrng | 1 | 1.4 | 0.01 | 0.01 | 0 | | 0.01 | 0.03 | 0 | 0.3 | \$20 | \$0 | \$0 | \$20 | Carbide
Production | 1 | 0.3 | 0.01 | 0.03 | 0 | | 15 | 24 | 2 | 228 | \$15,278 | \$0 | \$3,119 | \$18,397 | DD. Sulfur
Hexafluoride
(SF6) from
Electric
Power
Systems | 95 | 188 | 15 | 24 | 2 | | | | | | . , | | . , | | , | | | | | | | 0 | 0 | 0 | 0 | \$0 | \$0 | \$0 | \$0 | FF.
Underground
Coal Mines | 61 | 0 | 0 | 0 | 0 | | 0.03 | 0.05 | 0 | 1 | \$20 | \$0 | \$0 | \$20 | GG. Zinc
Production | 5 | 0.50 | 0.03 | 0.05 | 0 | | 66 | 109 | 6 | 1319 | \$81,793 | \$0 | \$374 | \$82,167 | HH. MSW
Landfills | 1129 | 1208 | 68 | 113 | 8 | | 7 | 3 | 2 | 63 | \$4,713 | \$0 | \$3,077 | \$7,789 | II. Industrial
Wastewater
Treatment | 2 | 51 | 8 | 4 | 3 | | 11 | 6 | 2 | 93 | \$6,884 | \$0 | \$62 | \$6,946 | OO. Suppliers
of Industrial
GHG | 121 | 74 | 11 | 6 | 2 | | 1 | 1 | 0 | 12 | \$872 | \$O | \$0 | \$872 | PP. Suppliers
of Carbon
Dioxide | 22 | 11 | 1 | 1 | 0 | | 0.17 | 0.33 | 0 | 4 | \$249 | \$0 | \$0 | \$249 | FGHGs in Pre-
Charged
Equp. Or
Foams | 33 | 3 | 0.2 | 0.3 | 0 | | 0 | 0 | 0 | | | | | \$0 | Sequestration
of Carbon
Dioxide | | 0 | 0.0 | | 0 | | 0 | 0 | 0 | 0 | \$0 | \$0 | \$0 | \$U | SS. Electrical
Equip.
Manufacture
& | | U | 0.0 | 0.0 | U | | 0 | 0 | 0 | 5 | \$358 | \$0 | \$0 | \$358 | Refurbishmen
t | 5 | 5 | 0.2 | 0.5 | 0 | | 6 | 5 | 1 | 54 | \$3,934 | \$0 | \$62 | \$3,996 | TT. Industrial
Waste
Landfills | 1 | 43 | 7 | 6 | 2 | |---------|---------|-------|--------|-------------|-----|-------------|-------------|---|-------|--------|-------|-------|-----| | -5 | -3 | 0 | -26 | -\$1,886 | \$0 | -\$125 | -\$2,011 | UU. Injection
of Carbon
Dioxide | 2 | -18 | -5 | -3 | 0 | | 9 | 9 | 0 | 45 | \$3,964 | \$0 | \$374 | \$4,338 | Sequestration
of CO2 with
EOR | 2 | 21 | 7 | 7 | 0 | | 48 | 36 | 30 | 459 | \$34,525 | \$0 | \$19,649 | \$54,175 | WW. Coke
Calciners | 15 | 360 | 48 | 36 | 30 | | 2.8 | 2.2 | 2.0 | 35 | \$2,627 | \$0 | \$62 | \$2,690 | XX. Calcium
Carbide | 1 | 29 | 3 | 2 | 2 | | 17 | 13 | 6 | 150 | \$11,089 | \$0 | \$374 | \$11,464 | YY.
Caprolactum,
Glyoxal, and
Glyoxalic Acid
Production | 6 | 119 | 17 | 13 | 6 | | 55 | 48 | 50 | 703 | \$52,987 | \$0 | \$1,559 | \$54,546 | ZZ. Ceramics
Production | 25 | 567 | 55 | 48 | 50 | | \$2,500 | \$1,194 | \$471 | 25,531 | \$2,672,580 | \$0 | \$2,734,062 | \$5,406,642 | TOTAL | 2,701 | 21,452 | 2,501 | 1,197 | 475 | arce categories, so the number of respondents is not additive. #### **Cost by Source Category** | verage
Total Burden | Total Labor | Canital Cast | O&M Cost | Total Cost | |------------------------|----------------|----------------------|--------------|-------------| | (hrs) | Cost
(\$) | Capital Cost
(\$) | (\$) | (\$) | | | | | | | | -8 | -\$2,425 | \$0 | \$0 | -\$2,425 | | | | | | | | 2 | \$119 | \$0 | \$0 | \$119 | | 27 | \$1,999 | \$0 | \$0 | \$1,999 | | | | | | | | 253 | \$18,566 | \$0 | \$62 | \$18,628 | | | | | | | | 41 | \$2,074 | \$0 | \$0 | \$2,074 | | 124 | \$7,497 | \$0 | \$2,561 | \$10,058 | | | | | | | | 21 | \$1,485 | \$0 | \$0 | \$1,485 | | 41 | \$1,186 | \$0 | \$0 | \$1,186 | | 71 | \$1,100 | ΨΟ | 40 | \$1,100 | | -95 | -\$2,680 | \$0 | -\$11,085 | -\$13,765 | 22045 | \$2,433,058 | \$0 | \$2,717,864 | \$5,150,921 | | | | | | | | 14 | \$618 | \$0 | \$0 | \$618 | | | | | | | | -76 | -\$6,133 | \$0 | -\$3,930 | -\$10,063 | | 1.4 | \$104 | \$0 | \$0 | \$104 | | 0.3 | \$20 | \$0 | \$0 | \$20 | 228 | \$15,278 | \$0 | \$3,119 | \$18,397 | | | | | | | | 0 | \$0 | \$0 | \$0 | \$0 | | | | | | | | 1 | \$20 | \$0 | \$0 | \$20 | | 1397 | \$82,745 | \$0 | \$374 | \$83,120 | | | , ,,, ,, | ** | <i>\$0.7</i> | , 30, 120 | | 65 | \$4,904 | \$0 | \$3,077 | \$7,981 | | | | | | | | 93 | \$6,884 | \$0 | \$62 | \$6,946 | | | | | | | | 12 | \$872 | \$0 | \$0 | \$872 | | , | | | | | | 4 | \$249 | \$0 | \$0 | \$249 | | 0 | \$0 | \$0 | \$0 | \$0 | | | | | | | | | | | | | | 5 | \$358 | \$0 | \$0 | \$358 | | F0 | +4.040 | +0 | +/0 | +4.000 | |--------|-------------------------------|--|--|---| | 58 | \$4,240 | \$0 | \$62 | \$4,303 | | | | | | | | -26 | -\$1,886 | \$0 | -\$125 | -\$2,011 | | | | | | | | 34 | \$2,923 | \$0 | \$250 | \$3,172 | | | | | | | | 474 | \$35,633 | \$0 | \$19,649 | \$55,282 | | | | | | | | 36 | \$2,701 | \$0 | \$62 | \$2,764 | 155 | \$11,488 | \$0 | \$374 | \$11,862 | | | | | | | | 719 | \$54,217 | \$0 | \$1,559 | \$55,777 | | 25,647 | \$2,676,114 | 0 | \$2,733,937 | \$5,410,052 | | | 34
474
36
155
719 | -26 -\$1,886
34 \$2,923
474 \$35,633
36 \$2,701
155 \$11,488
719 \$54,217 | -26 -\$1,886 \$0 34 \$2,923 \$0 474 \$35,633 \$0 36 \$2,701 \$0 155 \$11,488 \$0 719 \$54,217 \$0 | -26 -\$1,886 \$0 -\$125 34 \$2,923 \$0 \$250 474 \$35,633 \$0 \$19,649 36 \$2,701 \$0 \$62 155 \$11,488 \$0 \$374 719 \$54,217 \$0 \$1,559 | Exhibit 12.1. Summary of Annual Respondent Burden and Cost of Revisions for Greenhouse Gas Reporting Rule | Year | Number of Respondents | Total Labor Hours | Labor Costs | Non-Labor Costs (Annualized Capital/Startup and O&M) | Total Costs | |---------|-----------------------|-------------------|-------------|--|--------------| | 1 | 2,701 | 25,900 | \$2,684,681 | \$2,733,813 | \$5,418,494 | | 2 | 2,701 | 25,510 | \$2,671,081 | \$2,733,937 | \$5,405,019 | | 3 | 2,701 | 25,531 | \$2,672,580 | \$2,734,062 | \$5,406,642 | | Total | 8,104 | 76,940 | \$8,028,343 | \$8,201,812 | \$16,230,155 | | Average | 2,701 | 25,647 | \$2,676,114 | \$2,733,937 | \$5,410,052 | Exhibit 12.2. Annual Average Burden Over the First Three Years of the Information Collection, by Source Category | Collection, by Source Category | | | | | | | | | | | |--|--------------------|---|--|---|--|--|--|--|--|--| | Source Category | No.
Respondents | Annual
Average
Burden
(Hours)¹ | Annual
Average
Burden Per
Respondent
(hrs) | Average
Annual Labor
Costs
(\$)¹ | Average
Annual Non-
Labor Costs
(\$) ¹ | Annual Average
Labor and Non-
Labor Costs
(\$)¹ | | | | | | C. Stationary Combustion (general unspecified) | 310 | (8) | (0.0) | (\$2,425) | \$0 | (\$2,425) | | | | | | G. Ammonia
Manufacturing | 29 | 2 | 0.1 | \$119 | \$0 | \$119 | | | | | | H. Cement Production | 94 | 27 | 0.3 | \$1,999 | \$0 | \$1,999 | | | | | | I. Electronics
Manufacturing | 48 | 253 | 5 | \$18,566 | \$62 | \$18,628 | | | | | | N. Glass Production | 101 | 41 | 0.4 | \$2,074 | \$0 | \$2,074 | | | | | | P. Hydrogen Production | 114 | 124 | 1.1 | \$7,497 | \$2,561 | \$10,058 | | | | | | Q. Iron and Steel
Production | 121 | 21 | 0.2 | \$1,485 | \$0 | \$1,485 | | | | | | S. Lime Manufacturing | 71 | 41 | 0.6 | \$1,186 | \$0 | \$1,186 | | | | | | V. Nitric Acid Production | 1 | (95) | (94.8) | (\$2,680) | (\$11,085) | (\$13,765) | | | | | | W. Petroleum and
Natural Gas Systems | 188 | 22,045 | 117.3 | \$2,433,058 | \$2,717,864 | \$5,150,921 | | | | | | X. Petrochemical
Production | 31 | 14 | 0.5 | \$618 | \$0 | \$618 | | | | | | Y. Petroleum Refineries | 57 | (76) | (1.3) | (\$6,133) | (\$3,930) | (\$10,063) | | | | | | AA. Pulp & Paper
Mnfctrng | 1 | 1 | 1.4 | \$104 | \$0 | \$104 | | | | | | BB. Silicon Carbide
Production | 1 | 0 | 0.3 | \$20 | \$0 | \$20 | | | | | | DD. Sulfur Hexafluoride
(SF6) from Electric
Power Systems | 95 | 228 | 2 | \$15,278 | \$3,119 | \$18,397 | | | | | | FF. Underground Coal
Mines | 61 | 0 | 0 | \$0 | \$0 | \$0 | | | | | | GG. Zinc Production | 5 | 1 | 0 | \$20 | \$0 | \$20 | | | | | | HH. Landfills | 1,129 | 1,397 | 1.2 | \$82,745 | \$374 | \$83,120 | | | | | | II. Industrial Wastewater
Treatment | 2 | 65 | 32.5 | \$4,904 | \$3,077 | \$7,981 | | | | | | OO. Suppliers of
Industrial GHG | 121 | 93 | 0.8 | \$6,884 | \$62 | \$6,946 | | | | | | PP. Suppliers of Carbon
Dioxide | 22 | 12 | 0.5 | \$872 | \$0 | \$872 | | | | | | QQ. Importers/Exporters
of FGHGs in Pre-
Charged Equp. Or
Foams | 33 | 4 | 0.1 | \$249 | \$0 | \$249 | | | | | | RR. Geologic
Sequestration of Carbon
Dioxide | 9 | 0 | 0 | \$0 | \$0 | \$0 | | | | | | SS. Electrical Equip.
Manufacture and
Refurbishmnet | 5 | 5 | 1 | \$358 | \$0 | \$358 | | | | | | TT. Industrial Waste
Landfills | 1 | 58 | 58.0 | \$4,240 | \$62 | \$4,303 | | | | | | | | | | | | | | | | | | UU. Injection of Carbon
Dioxide | 2 | (26) | (13.0) | (\$1,886) | (\$125) | (\$2,011) | |---|----|------|--------|-----------|----------|-----------| | VV. Geologic
Sequestration of CO2
with EOR | 2 | 34 | 17 | \$2,923 | \$250 | \$3,172 | | WW. Coke Calcining | 15 | 474 | 31.6 | \$35,633 | \$19,649 | \$55,282 | | XX. Calcium Carbide | 1 | 36 | 36.0 | \$2,701 | \$62 | \$2,764 | | YY. Caprolactum,
Glyoxal, and Glyoxalic
Acid Production | 6 | 155 | 25.9 | \$11,488 | \$374 | \$11,862 | | ZZ. Ceramics Production | 25 | 719 | 28.8 | \$54,217 | \$1,559 | \$55,777 | Table 5 - Annual Designated Administrator Burden and Cost of Recordkeeping and Reporting Requirements for Revisions to Reporting, Recordkeeping, and Verification Requirements under the Greenhouse Gas Reporting Program - Year 1 (2025) | Reporting Frogr | (A) | (B) | (C) | (D) | | | | |---|---|-----------------------------|------------------------------------|--------------------------------|--|--|--| | | (*,) | (=) | (0) | (=) | | | | | Burden Item | Number of
Occurrences Per
Year ^a | EPA Hours Per
Occurrence | Labor Hours
Per Year
(C=AxB) | EPA Cost Per Year ^b | | | | | 1. Applications | | not ap | oplicable | | | | | | 2. Read and Understand Rule Requirements not applicable | | | | | | | | | 3. Required Activities | | | | | | | | | A. Observe stack tests | | not ap | oplicable | | | | | | B. Excess emissions Enforcement Activities | | not ap | oplicable | | | | | | C. Create Information | | not ap | oplicable | | | | | | D. Gather Information | | not ap | oplicable | | | | | | E. Report Reviews | | | | | | | | | 1. Review new/revised data elements ^c | 20,445 | 0.02 | 409 | \$24,915 | | | | | F. Prepare annual summary report | not applicable | | | | | | | | 4. Travel expenses: (1 person * 30 hours per year / 8 hours per day * | \$75 per diem) + (\$ | 600 per round trip |) = | \$0 | | | | | TOTAL 409 \$24,915 | | | | | | | | ### **FOOTNOTES** - a Number of occurrences is the number of new or revised data elements to be reported times the number of facilities for each applicable subpart that would be required to submit data elements. - b Estimated based on an average hourly labor rate for salary and overhead and benefits for Agency staff of \$60.93. - c Includes review of new and revised data elements effective for RY2025. Table 6 - Annual Designated Administrator Burden and Cost of Recordkeeping and Reporting Requirements for Revisions to Reporting, Recordkeeping, and Verification Requirements under the Greenhouse Gas Reporting Program - Year 2 (2026) | | Greenhouse ous reporting | (A) | (B) | (C) | (D) | |----|--|---|------|------------------------------------|-----------------------------------| | | Burden Item | Number of
Occurrences Per
Year ^a | | Labor Hours
Per Year
(C=AxB) | EPA Cost
Per Year ^b | | 1. | Applications | not applicable | | | | | 2. | Read and Understand Rule Requirements | not applicable | | | | | 3. | Required Activities | | | | | | | A. Observe stack tests | not applicable | | | | | | B. Excess emissions Enforcement Activities | not applicable | | | | | | C. Create Information | not applicable | | | | | | D. Gather Information | not applicable | | | | | | E. Report Reviews | | | | | | | 1. Review new/revised data elements ^c | 20,445 | 0.02 | 409 | \$24,915 | | | F. Prepare annual summary report | not applicable | | | | | 4. | Travel expenses: (1 person * 30 hours per year / 8 hours per day * | * \$75 per diem) + (\$600 per round trip) = \$0 | | | \$0 | | | TOTAL | 409 \$24,915 | | | \$24,915 | ### **FOOTNOTES** - a Number of occurrences is the number of new or revised data elements to be reported times the number of facilities for each applicable subpart that would be required to submit data elements. - b Estimated based on an average hourly labor rate for salary and overhead and benefits for Agency staff of \$60.93. - c Includes review of new and revised data elements effective for RY2025. Table 7 - Annual Designated Administrator Burden and Cost of Recordkeeping and Reporting Requirements for Revisions to Reporting, Recordkeeping, and Verification Requirements under the Greenhouse Gas Reporting Program - Year 3 (2027) | | | (A) | (B) | (C) | (D) | |----------|--|---|------------|-------------------------|-----------------------| | | D. de Mari | Number of Occurrences Per | | Labor Hours
Per Year | EPA Cost | | <u> </u> | Burden Item | Yeara | Occurrence | (C=AxB) | Per Year ^b | | 1. | Applications | not applicable | | | | | 2. | Read and Understand Rule Requirements | not applicable | | | | | 3. | Required Activities | | | | | | | A. Observe stack tests | not applicable | | | | | | B. Excess emissions Enforcement Activities | not applicable | | | | | | C. Create Information | not applicable | | | | | | D. Gather Information | not applicable | | | | | | E. Report Reviews | | | | | | | 1. Review new/revised data elements ^b | 20,557 | 0.02 | 411 | \$25,051 | | | F. Prepare annual summary report | not applicable | | | | | 4. | Travel expenses: (1 person * 30 hours per year / 8 hours per day * | * \$75 per diem) + (\$600 per round trip) = \$0 | | | \$0 | | | TOTAL | 411 \$2 | | | \$25,051 | ### **FOOTNOTES** - a Number of occurrences is the number of new or revised data elements to be reported times the number of facilities for each applicable subpart that would be required to submit data elements. - b Estimated based on an average hourly labor rate for salary and overhead and benefits for Agency staff of \$60.93 - c Includes review of new and revised data elements effective for RY2025 and new data elements for the technology assessment report effector subpart I. There are 28 subpart I facilities that would be required to submit a technology assessment report once every 5 years. The coassociated with 4 new data elements would apply in year 2027. Exhibit 14.1. Summary of Agency Burden and Cost of Revisions to the Greenhouse Gas Reporting Program | Year | Number of Occurrences Per Year (1) Total Annual Burden Hours | | Labor Costs | | |---------|--|-------|-------------|--| | 1 | 20,445 | 409 | \$24,915 | | | 2 | 20,445 | 409 | \$24,915 | | | 3 | 20,557 | 411 | \$25,051 | | | Total | 61,448 | 1,229 | \$74,880 | | | Average | 20,483 | 410 | \$24,960 | | (1) Number of occurrences is the number of new or revised data elements to be reported times the facility count for each applicable subpart with new data elements. **Exhibit 12.3. Bottom Line Annual Burden and Cost** | | Year 1 (2025) | Year 2 (2026) | Year 3 (2027) | Total | Annual Average | |--|---------------|---------------|---------------|--------------|----------------| | Respondent Costs | | | | | | | Number of Respondents | 2,701 | 2,701 | 2,701 | 8,104 | 2,701 | | Total Respondent Labor Hours | 25,900 | 25,510 | 25,531 | 76,940 | 25,647 | | Total Respondent Labor Costs | \$2,684,681 | \$2,671,081 | \$2,672,580 | \$8,028,343 | \$2,676,000 | | Non-labor (Capital and O&M) Costs | \$2,733,813 | \$2,733,937 | \$2,734,062 | \$8,201,812 | \$2,734,000 | | Total Respondent Costs | \$5,418,494 | \$5,405,019 | \$5,406,642 | \$16,230,155 | \$5,410,000 | | Agency Costs | | | | | | | Total Agency Burden Hours | 409 | 409 | 411 | 1,229 | 410 | | Total Agency Labor Costs | \$24,915 | \$24,915 | \$25,051 | \$74,880 | \$24,960 | | Total Burden Hours (Respondents +
Agency) | 26,308 | 25,918 | 25,942 | 78,169 | 26,056 | | Bottom Line Costs (Respondents +
Agency) | \$5,443,408 | \$5,429,933 | \$5,431,693 | \$16,305,035 | \$5,435,000 |